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Abstract. In a time of data abundance, automatic methods increas-
ingly support manual modeling. To this end, the Sparse Identification of
Non-linear Dynamics (SINDy) provides a solid foundation for identifying
non-linear dynamical systems in the form of differential equations. In bio-
chemistry, reaction networks imply coupled differential equations. It has
recently been demonstrated how this intrinsic coupling can be achieved
within the SINDy framework, providing a straightforward interpretation
of the learned equations as reaction systems with mass-action kinetics.
However, this extension inherits from SINDy the requirement to enumer-
ate all candidate reactions in a library, resulting in ill-posed optimization
problems and long model descriptions, limiting its utility for identifying
models with many species. Here, we elaborate on the recent advances
in bringing SINDy to the biochemical domain by considering the sub-
sampling of reaction libraries as part of an evolutionary optimization
scheme. This enables the generation of parsimonious models, as well as
the inclusion of model-level constraints, and allows the consideration of
large numbers of candidate reactions. We evaluate the approach on two
smaller case studies and the recovery of a large Wnt signaling model.

Keywords: sparse regression · genetic programming · automatic model
generation · machine learning · reaction systems.

1 Introduction

In regression, models are used to infer the relationships among variables from a
series of measurement points to, e.g., predict future measurements. This is done
by choosing from various available models, from simple linear functions to deep
neural networks, and fitting methods. However, the most accurate deep models
quickly become opaque to the scientist and end-user, especially when learning
complex and non-linear relationships. Thus, symbolic regression seeks to identify
expressive yet human-interpretable expressions for the relationships inside a sys-
tem. Instead of choosing a specific model structure, these approaches learn the
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1. INTRODUCTION J. N. Kreikemeyer et al.

structure alongside suitable parameters. For example, the Sparse Identification
of Non-linear Dynamics (SINDy) [7] can often discover parsimonious differential
equations that govern the observed evolution of dynamical systems. Remark-
ably, it achieves the learning of non-linear dynamics by solving a linear equation
system, relying on a comprehensive set of time series for all variables of interest
and a library of possible function evaluations on those variables (cf. Fig. 1, top).

For many engineering domains, ordinary differential equations (ODEs) are
a suitable modeling formalism and, thus, a target for symbolic regression. In
systems biology, reaction or rule-based modeling approaches prevail [11], also
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Fig. 1: Schematic overview of SINDy ([7], top), coupled SINDy ([8], center) and
evolving libraries (this paper, bottom). For simplicity, we neglect the 1/2 factor
for x2 and y2 resulting from mass-action kinetics. Graphic inspired by [7].
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J. N. Kreikemeyer et al. 2. BACKGROUND

reflected in systems biology standards [16]. Although reactions are frequently
mapped to ODEs for simulation, the opposite mapping is not as straightfor-
ward [32]. Particularly, if ODEs are learned from data, they might easily miss
an important feature of the modeled biochemical reactions that is intrinsically
captured by reaction-based modeling approaches: reactions introduce a coupling
between ODEs. For example, a single reaction A+B

k−→ C, translates into three
coupled ODEs dA/dt = dB/dt = −dC/dt = −k · A · B. Note how terms in the
differential equation for one variable constrain the terms that may occur in the
other variables’ derivatives (cf. Fig. 1, center). Based on this observation, in [8], a
coupled approach to SINDy is proposed. By using a library of possible reactions
instead of possible functions, reaction-based models can be learned from data.

One problem with introducing such a coupling is the combinatorial nature
of the possible couplings. Compared to standard SINDy, its coupled counterpart
exhibits a much wider design matrix, which can lead to problems with linear
solvers whose ability to find good solutions depends on a well-conditioned matrix
(cf. Section 5.1). This motivates a subsampling approach, where only a well-
chosen subset of the reaction candidates is used to fit a model. To this end, we
here embed coupled SINDy inside a genetic algorithm (cf. Fig. 1, bottom) to find
an optimal subset and thus model. This allows constraining the model size to
a minimum, ensuring human interpretability, as well as handling large libraries
that would otherwise result in extremely large regression problems. We evaluate
this idea on three case studies (cf. Section 5): the discovery of disease spread,
predator-prey dynamics, as well as the complex dynamics of a Wnt pathway [34]
involving 19 variables, which results in a library of around 37 000 reactions. To
the best of our knowledge, the latter is one of the largest search spaces tackled so
far for the learning of reaction models. For example, the large case study in [17]
searches only around 6000 possible reactions. Before introducing our method in
greater detail in Section 4, we provide some background on biochemical reaction
models and (sparse) symbolic regression (cf. Section 2), including related work
(cf. Section 3). We conclude with a discussion of the results and an outlook in
Sections 6 and 7.

2 Background

This section reviews the formalism of reaction systems, which is widely used
to develop models in biochemistry. Typically, these models are hand-crafted,
making extensive use of domain knowledge. The reaction systems’ parameters
are often calibrated based on measurement data. The second part discusses how
to additionally identify a model structure from (time-series) data, which is the
main topic of this paper and further discussed in Section 3.

2.1 Biochemical Reaction Models

In systems biology, reaction networks are important in describing system dy-
namics. Their simple syntax allows a natural specification of simulation models
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2. BACKGROUND J. N. Kreikemeyer et al.

in terms of reactants, products, and reaction rate constants:

Rj : l0,jS0 + · · ·+ li,jSi
cj−→ r0,jS0 + · · ·+ ri,jSi (1)

where S is a vector of species, l·,j and r·,j are vectors of coefficients determining
the stoichiometry and change νj = r·,j − l·,j of reaction j, and cj determines
the rate at which the reactants are consumed to form products. It is common
to restrict

∑
i li,j = 2 for all reactions j, i.e., only consider binary reactions, as

a collision of more than two reactants is unlikely. Starting from an initial vector
of amounts for each species, their quantities evolve over time t, which we denote
as S(t). Many systems obey the law of mass action, such that the effective
rate aj(S(t)) (also called propensity) of a reaction depends on the reactant’s
amounts at the current time. For example, for deterministic systems aj(S(t)) =
A(t)B(t)cj in the case of binary reactions with reactants A and B (A ̸= B) and
aj = 0.5A2(t)cj (A = B).

Assuming a homogeneous mixture of species, the semantics of this represen-
tation are defined by a system of ODEs called the chemical master equation
(CME) [35]. However, as this system is intractable for many relevant cases, sim-
ulation is often applied in practice. The CME can, for example, be understood as
a continuous-time Markov chain (CTMC) over the evolution of the amounts of
species S(t), accounting for the discreteness and stochasticity of small amounts.
Using the stochastic simulation algorithm, sample trajectories of the CTMC can
be obtained, approaching the exact distribution in the limit of samples. Here, we
focus on approximating the CME under the assumption of a deterministic sys-
tem so that reactions can be directly translated to (coupled) ODEs over time. An
example reaction system and its translation to a system of differential equations
are depicted in Fig. 1 (bottom left).

Many models use rule-based formalisms, which offer even more expressiveness
by introducing the concepts of attributes and compartments [15,4,11]. In cases
where attributes take on only a finite set of values and compartments are not
dynamic, it is possible to derive the underlying “flattened” reaction network. We
use this approach in Section 5 when considering a Wnt signaling model.

2.2 Symbolic Regression for Reaction Systems

The field of symbolic regression develops methods to derive symbolic expressions
fitting a given set of measurement points. When the fitting is successful, these are
powerful alternatives to black-box regression models, such as neural networks.
Symbolic regression methods have also been applied to reaction systems. Early
approaches relying on genetic programming [18,26], start with a random popu-
lation of reaction systems and converge to increasingly fit solutions by applying
evolutionary operators.

Whereas genetic programming can, in principle, work with any symbolic ex-
pression including imperative programs, the sparse identification of non-linear
dynamics (SINDy) [7] is tailored toward differential equations describing the
behavior of a system over time, as are common in computational science. This
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is made possible by constructing a linear equation system over derivative mea-
surements and possible functions involved in them and solving a least-squares
problem. The latter is defined over (1) N measured variables and M discrete
measurements of their time derivatives Y ′ ∈ RM×N (which may be determined
numerically from Y ) and (2) a matrix of candidate derivatives (design matrix)
Θ(Y ) ∈ RM×K , determined by the application of a vector of candidate functions
Θ ∈ RK with θ ∈ Θ : RN → R to each measurement in Y :

min
Ξ

||Y ′ −Θ(Y )Ξ||2 (2)

The weights or parameters Ξ ∈ RK×N then provide a factor with which each
function from the library Θ contributes to each of the N ODEs. A schematic de-
piction is given in Fig. 1 (top). This problem formulation can be further extended
in many ways, for example, by using regularization [36], a two-step procedure
[17], or ensembling [12].

By requiring a specific coupling of the variables, SINDy can also be used to
discover reaction networks [8]. The key idea is that Θ now consists of vectors of
functions, reflecting the terms that will appear in each of the species’ derivatives
when a particular reaction is included in the model (cf. Fig. 1, center). In this
formulation, the library Θ consists of the corresponding derivatives of all possible
candidate reactions and there is only one coefficient ξ per reaction indicating its
rate constant.

3 Related Work

As the automatic discovery of mechanistic models from data promises enormous
benefits not only for predicting dynamics but also for furthering their under-
standing, it has a long-standing history under many names [19]. Nevertheless,
there are still many unsolved challenges and the amount of available data steadily
increases, making it an active research area. Here, we present some recent work
closely related to our approach.

Discovering ODEs from data, with a focus on biochemical systems, is dis-
cussed in [10]. The authors automatically discover parsimonious models by sys-
tematically fitting models of increasing complexity. In [7], the seminal Sparse
Identification of Nonlinear Dynamics (SINDy) is proposed as already introduced
in the previous section. [12] presents an extension to SINDy in the form of E-
SINDy, which allows for uncertainty quantification by subsampling either by
time (bagging E-SINDy) or library terms (library bagging E-SINDy). As op-
posed to uncertainty quantification, a random subsampling of the library is not
enough in our case (cf. Section 4), hence we perform a goal-driven evolution
of our library of reactions. The authors of [8] introduce a method to generate
reaction models with SINDy by considering the coupling of species. They test
their method by building a reaction system surrogate for an agent-based model.
We here extend this approach with a genetic algorithm and evaluate its ability
to recover a ground truth reaction model from synthetic measurement data.
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The latter is just one example of a method for the data-driven discovery of
reaction systems, and the number of proposed methods is growing, particularly
in the last decade. Recently, a deep learning architecture based on a variational
autoencoder has been demonstrated to discover stochastic reaction models [3].
Preliminary results show the successful recovery of a single reaction with two
species from data. This work is part of ongoing efforts in the field of relational
inference using variational autoencoders to learn interaction graphs from data,
such as [13]. Closely related to (coupled) SINDy, the “ReactioNet Lasso” [17]
is a method to fit stochastic population models to heteroscedastic time series
distribution snapshots. It works by considering the moment equations, an ODE
system describing the evolution of stochastic moments derived from the chemical
master equation (cf. Section 2). Another recent method is Reactmine [24], which
builds models one reaction at a time by stochastically searching a model tree.
By limiting the depth of the search tree, the discovery of parsimonious models is
enforced. Here, we evaluate a library-based approach and limit model size using
an evolutionary algorithm.

Combining sparse regression with genetic programming approaches is not a
new idea. Most recently, [2] uses a combination of SINDy and genetic program-
ming to allow the inclusion of rational functions in the library for the recovery of
multibody physical systems. Similarly, [22] presents a method (not relying on ge-
netic programming) to handle rational functions occurring in biological networks
in the SINDy framework, deriving parsimonious models. A similar idea to our
approach is presented in [23], where SINDy is integrated with symbolic regression
via genetic programming in a framework called “Deep Symbolic Regression”. The
authors also find that, in their applications to orbital mechanics, genetic pro-
gramming enables a limitation of the learned models’ complexity. Here, we are
interested in the special case of reaction systems and coupled SINDy.

4 Evolving Libraries

As introduced in Section 2, SINDy requires a library of all possible functions
to be applied to the measured time series. The number of possible interactions
and, thus, library terms increases superlinearly with the number of variables.
When requiring a coupling of reactions as with coupled SINDy, this problem
becomes significantly more pronounced (cf. Fig. 1), which can lead to a design
matrix that poses major challenges for linear solvers in terms of problem size
and collinearities (cf. Section 5.1).

To circumvent this issue, a straightforward idea would be to reduce the library
size by subsampling, as also proposed in [12]. In the former, library subsampling
is used to estimate the algorithm’s uncertainty over the learned coefficients Ξ.
However, for this to work, the samples must be large enough to ensure a high
probability of including many “helpful” reactions. Typically only one or two
library terms are omitted. Taking much smaller subsamples would result in a
random search over models. Hence, this approach does not readily solve the
problems that arise from large libraries. Thus, we take the idea one step further.
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4.1 Searching the Sub-Library Space using a Genetic Algorithm

Instead of taking purely random subsamples, we perform a genetic search over
possible subsamples of the library, assigning a higher fitness to libraries that
lead to a better fit. Whereas coupled SINDy alone has to consider all possible
models “at once”, an evolutionary strategy can consider a small subset at a time.
Limiting the number of reactions in the library also enforces a certain degree of
parsimony, as observed in [23] for symbolic expressions. Further, combinations
of reactions that lead to low regression accuracy are discouraged. A schematic
overview can be found in Fig. 1 (bottom).

Our genetic algorithm (GA) follows a standard procedure [20] and starts with
a randomly sampled initial population of n reaction sublibraries, each containing
a fixed number of reactions. The samples are taken from an enumeration of
all possible reaction structures up to configurable bounds for the number of
reactants and products and a given number of species. Duplicate reactions are
removed from a subsampled library.

In each step, coupled SINDy is applied to all library subsamples, yielding
estimates of the rate constants. The R2 score of each sublibrary, parametrized
with the corresponding constants, is used as its fitness value. After sorting the
population members by their fitness, the first n′ < n libraries are selected for re-
production, i.e., as the basis for generating the next generation’s population. In
our experiments, we typically use a relatively small value for n′ between one and
ten percent of n. From the n′ selected libraries, n new libraries are obtained by (1)
picking a library and randomly replacing one reaction with a newly sampled one
(mutation) and (2) picking two libraries and exchanging several reactions among
them (crossover). While mutation allows the exploration of unknown parts of
the optimization space, crossover exploits good solutions under the assumption
that, often, the combination of two fit solutions achieves a higher fitness than the
original solutions alone. The latter is intuitive in the case of evolving libraries,
as the presence of reactions explaining a certain behavior correlates with a high
fitness of the sublibrary. In other words, the fitness of a sublibrary is expected to
be correlated with the presence of certain “helpful” reactions. The above proce-
dure is repeated over a given number of steps (generations) or until the current
fittest sublibrary reaches a threshold for the R2 score. Between steps, one elite
population member (the currently fittest sublibrary) is preserved as-is for the
next generation.

The coupled SINDy approach used to determine the rate constants and fitness
values follows the description in [8] and was, together with all experiments,
implemented4 in the Python programming language. In preliminary experiments,
we found that the non-negative least squares (nnls) algorithm described in [5]
and, in our case, implemented in the SciPy Python module [31] produced the
best results. Application of STLSQ [7] or the LASSO [36] often resulted in worse
solutions in our coupled case. For numerical differentiation, a central differences
method as implemented in NumPy’s [27] gradient function is used, as we found
that forward differences performed consistently worse in our applications.
4 https://zenodo.org/doi/10.5281/zenodo.11654439
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4.2 Including Background Knowledge

In many cases, biochemical models are not built from the ground up but based
on existing models and knowledge [34,1]. Considering the data-driven learning
of models, this calls for a method to include such background knowledge.

The simplest form of this is the removal of certain reactions from the library.
For example, if there is information about a compartment structure of the bio-
chemical system, such as a division into cytosol and nucleus, one may want to
exclude reactions between species located in different compartments. These can
be removed from the reaction enumeration that underlies the initial population
generation, as well as the mutation operator.

When some reactions are known, i.e., a model is extended, the coefficients of
known reactions can be constrained to values greater than zero using a suitable
regression algorithm [17]. Alternatively, if Θ = Θ1∪Θ2 and a subset of reactions
Θ1 is known a priori along with their rate constants Ξ1, the effects of these can
be subtracted from the observations, and the problem from Equation 2 becomes:

min
Ξ2

||(Y ′ −Θ1(Y )Ξ1)−Θ2(Y )Ξ2||2

This idea is also employed in [24] as part of a tree-based search over models.
An advantage of the GA is the possibility of including arbitrary (numeri-

cal) terms in the fitness function. This can be used to introduce an inductive
bias, which encourages sublibraries with certain properties. In contrast to the
“library-level” constraints already possible with SINDy, this allows the defini-
tion of constraints on the “model level”, e.g., on the existence of a reaction that
produces/consumes a certain species. For example, in the case of a compart-
ment structure discussed above, this can be used to encourage the existence of
reactions for shuttling between parts of the cell (cf. Section 5.3).

5 Case Studies

In this section, we apply the concept of evolving libraries in three benchmarks.
First, we aim to recover a compartmental model of epidemic dynamics (SIR)
[25] and a well-known model of predator-prey dynamics based on the works of
Lotka and Volterra [28]. These models contain a rather small number of reactions
and species (≤ 3). However, as noted before, even for these, the search space is
quite large (around 30 to 100 candidate reactions or 230 to 2100 models when
allowing models of all sizes). As a final benchmark, we also study the recovery
of a Wnt pathway model as presented in [34]. After flattening (cf. Section 2) and
some reformulations, this model consists of 43 reactions over 19 species. For this
model, we consider a search space of around 37 000 candidate reactions.

As is commonly done, we focus on a synthetic environment for model learning
to highlight the raw capabilities of our approach. For each benchmark model,
we generate time-series measurements by simulating the ground truth model
over a certain time period with the LSODA integrator [29]. We found this vari-
able step-size method to consistently yield the best results among the methods
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we tested (explicit Runge-Kutta methods of orders three, five, eight; Backward
Differentiation Formulas). The likely reason is its automatic adaptation to the
observed stiffness of the system, which can vary widely between learned models.
Measurements are taken at fixed intervals or at each (variable-size) integration
step. The latter can yield better results than fixed steps, as regions with larger
derivatives, higher frequencies, and turning points are sampled more densely.
Generally, measurement data is rarely well-formed like this but may be obtained
by an appropriate experiment design. Even then, it will exhibit noise depending
on the measurement technique, which we disregard here for simplicity.

We compare the results of coupled SINDy (c-SINDy) to the results obtained
with the evolving libraries (evolib) approach. Additionally, we compare a random
search that follows the same procedure as the GA but samples a new population
at each step, reporting the fitness of the best-found solution until the current
step. For each problem, the “complete” library consists of all reactions between
the respective number of species with up to two reactants and up to three (SIR,
Predator-Prey) or two (Wnt) products. In every case we limit the maximum
change νi,j per species i (cf. Section 2) to one, excluding some cases where the
underlying derivatives are collinear, e.g., A 1−→ 3A (dA/dt = 2A) and A

1−→ 2A
(dA/dt = A) where only the latter will be part of the library. As the results
of evolib and random search are stochastic, we perform ten replications of the
complete optimization, additionally reporting the mean. An overview of the hy-
perparameters used in our experiments can be found in Appendix A.

5.1 Susceptible-Infected-Recovered Model

The susceptible-infected-recovered (SIR) model describes the dynamics of an
infectious disease spreading in a population. Susceptible individuals are infected
upon interaction with an infected individual (S + I → 2I). Infected individuals
recover at a certain rate (I → R). Here, the rate constants of the ground truth
model are set to 0.02 for the infection and 5 for the recovery reaction; the initial
population consists of 1980 susceptible, 20 infected, and 0 recovered individuals.
The data comprises 100 points measured at equal distances over a period of one
time unit. The GA worked with 100 sublibraries, i.e., each generation of the
GA contains 100 individuals. Each sublibrary contains 2 reactions, and the total
number of candidate reactions to select from is 97.

The results shown in Fig. 2 indicate that, on this dataset, the solver used with
c-SINDy and the GA in evolib converge to a solution yielding a good fit to the
data. In this rather small search space of choosing two out of 97 reactions, the
random search also eventually converges to the same solution as evolib, but at a
much slower rate. Compared to c-SINDy, the evolib approach results in a more
parsimonious model, in this case, recovering the ground truth model. eikeThe re-
sulting model of the c-SINDy approach requires many more reactions with lower
rate constants to achieve its fit, learning “wrong” mechanisms. This disadvantage
can be attributed to the design matrix’s properties. Whereas evolib’s smaller ma-
trices often have full rank, the complete matrix representing 97 reactions only
has rank 18, posing a rather ill-conditioned problem.
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Fig. 2: Results for recovering the SIR model from synthetic measurement data.
Even though the solver used with coupled SINDy is an iterative procedure, the
steps are not comparable to the GA steps and we only indicate the final achieved
loss for coupled SINDy by a straight line in all figures.

5.2 Lotka-Volterra Model

Our second example is a model of predator-prey dynamics. The predator (here
W/wolf) interacts with the prey (here S/sheep), increasing the predator pop-
ulation (S + W → 2W ). The predator population decays over time (W → ∅),
whereas the prey population multiplies (S → 2S). The rate constants and initial
population for the ground truth model were set to 0.01, 8, 10.0 for predation,
predator decay, and prey multiplication, respectively, and the initial population
is given by (S,W ) = (1000, 20). The data comprises 100 equally-spaced measure-
ments over two time units. Analogous to the SIR benchmark, the GA worked
with 100 sublibraries of size 3 (total number of candidate reactions 28).

We see that the results shown in Fig. 3 are very similar to the observations
when learning the SIR model. In contrast to these results, for this ground truth
parametrization featuring an oscillation between the predator and prey species,
we found that 100 measurements were not enough for an accurate fit, although
very similar dynamics producing an oscillation of different frequencies were still
discovered. Notably, c-SINDy achieves a lower Loss, but the model learned by
evolib provides a better fit to the reference trajectory. This is because the so-
lution quality is measured by the goodness of fit to the numerical derivatives
(cf. Y ′ in Eq. 2 in Section 2), which in this case are not reliable as there is an
insufficient number of samples at the population peaks. Thus, whereas c-SINDy
can overfit the (misleading) derivatives, evolib is forced to generalize, abiding
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by the configured maximum model size. Using the LASSO with c-SINDy and
different regularization weights also yielded similar results.
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(b) Best model’s trajectories.
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(c) Learned models (ground truth, cou-
pled SINDy, evolving libraries).

Fig. 3: Results for recovering the Predator-Prey model from synthetic measure-
ment data.

5.3 Wnt Pathway

Finally, we also study a model of the Wnt signaling pathway as a very large ap-
plication with significant relevance to systems biology. We use the model given
in [34], an extension of both, the seminal Wnt model by Lee et al. [21], and an
adaptation of Haack et al. [14]. The goal of the study [34] was to explain the
cellular response of osteoblasts to increased oxidative stress induced by plac-
ing them on a micropillar structure found on a titanium implant. The original
model, written in ML-Rules [15], uses attributes and compartments. For this
study, we transformed the model into a flattened version so it presents a simple
reaction system (cf. Section 2). Further, without changing the model behavior,
the Sox17 species was replaced by respectively increasing the degradation rate
of the TCF/β-catenin complex (R14). The Ros synthesis (R1), for which the
rate depends on a counting species P (H1) was rewritten with mass-action ki-
netics. The final model consists of 43 reactions between 19 species (cf. App. C),
resulting in a highly non-trivial learning task.

Hence, we make some additional assumptions. First, as we are mostly lim-
ited to the capabilities of SINDy, we can only readily consider the case where
all species are measured. This is rarely the case in systems biology, despite con-
tinuous advances in measurement techniques, such as single-cell mass-cytometry
[33]. In [34], solely measurements of Axin, β-catenin, Sox17, and ICAT at a small
number of time points were available in addition to the basis models. Secondly,
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we here use the steps proposed by the numeric integration with LSODA as mea-
surement points as described at the beginning of this section. We additionally
truncated the time series to start at the 16-minute mark and end at 500 minutes,
as we found that the extremely high derivatives at the beginning, which are a
result of a long and fast chain of reactions, hindered a fast convergence of the
optimization. In fact, the ground truth model was fitted with the primary goal
of reproducing the steady-state behavior observed in the wet lab experiments,
disregarding the initial transient response phase. Note, however, that this may
generally discard important information on the model dynamics, and we leave
an in-depth analysis of alternative ways to deal with this situation inside the
SINDy framework as future work.

Similar to [17], we consider two cases: (1) learning of the complete model
“from scratch” and (2) extending a base model (representing the known reac-
tions from [21,14]) with the six rules that have been added and fitted in [34]
(amounting to nine reactions when flattened). For both cases, we also tested
the inclusion of background knowledge about the compartment structure of the
system. This entails reducing the library only to include reactions where species
within the same compartment (nucleus or cytosol) interact and further the ad-
justment of the fitness function to penalize libraries that do not include shuttling
of species, encouraging the existence of at least one migration into/out of the
nucleus, respectively. We implement this by subtracting 1 from the R2 score
fitness if there is no shuttling into the nucleus (similarly for shuttling out of
the nucleus). Given that the R2 score quickly approaches its maximum value of
one during optimization, this is a large enough penalty to downrank sublibraries
when sorting them by their fitness. As it enables unwanted constructs, we also
penalize the use of the counting species P with 0.01. We choose a low penalty as
two reactions in the ground truth model still depend on it.

With this in mind, the complete library size for c-SINDy is 37 018. When
extending the model, the 35 fixed reactions are removed from this library. In the
case where we constrain reactions to occur only between reactants within the
same compartment, the library size is significantly reduced to 10 462 reactions.

Fig. 4 shows the convergence of the four scenarios described above. As a first
result, we see that, as expected, the evolutionary algorithm significantly outper-
forms the random search, which we only performed for the unconstrained cases.
In all cases, evolib yields a higher loss than c-SINDy. Looking at the resulting
models reveals that c-SINDy’s solutions hinge on a huge amount of around 500
reactions, some of which exhibit enormous rates. These cannot reasonably be
depicted here. The models learned with evolib are shown in Appendix C. Thus,
we conclude that, similar to our smaller case studies, evolib trades off a higher
loss value for a more comprehensible model.

In contrast to the smaller case studies, we observed that there is no significant
overlap between the ground truth model and the learned models. Some ground
truth reactions are recovered, but often their effects are scattered over multiple
different reactions in the learned model so that a single reaction is expressed by
multiple ones.
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For example, the model learned by evolib from scratch shown in Appendix C
Fig. 6a includes the Axin-induced degradation of β-catenin, which is a central
part of the Wnt pathway. In the constrained case Fig. 7a, the shuttling of β-
catenin is recovered. The small overlap with the ground truth model is a hint
that our chosen constraints are not enough to enforce biologically viable models,
which underlines the problem of model identifiability (cf. Section 6). This is
further underpinned by the fit to the reference trajectory shown in Appendix B.
In the extension cases, a visually accurate fit is achieved when simulating the
learned models, despite them being different from the ground truth. Judging
from Fig. 4, the (excessive) models learned by c-SINDy seem to produce much
more accurate fits but were not amenable to integration with LSODA, which
resulted in errors regarding numerical precision (cf. Section 6).

Note, that at this time, the implementation in Python is not optimized for
performance, so we can only reliably estimate theoretically the performance ben-
efits of evolib (cf. Section 6). With our current setup and hyperparameters, we
found that performing ten replications of evolib in parallel, also parallelizing the
fitness evaluation, took around five times as long as a single run of c-SINDy for
the Wnt experiments (1h vs. 5h), but this result depends heavily on the popula-
tion size and number of steps performed. For example, increasing the population
size allows for decreasing the number of steps, where the computations on the
former can be fully parallelized, leading to much fewer sequential steps and faster
convergence. Note also that we limited the number of iterations for non-negative
least squares to 108 for both approaches.
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Fig. 4: Convergence of evolving libraries for learning the Wnt pathway and loss
of the solution found by coupled SINDy. In the constrained case, coupled SINDy
is not applicable and we deemed a random search uninformative.
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6 Discussion

Our results demonstrate that the genetic evolution of libraries can provide ben-
efits in terms of model parsimony and fit. In the smaller case studies, evolib
enables the recovery of the ground truth model, which was not possible with
coupled SINDy alone. However, evolib was not able to recover a biologically vi-
able structure for the complex Wnt pathway, even though achieving a visually
accurate fit to the reference trajectory in some scenarios. Partially, the missing
ground truth structures can be explained by our truncation of the time-series
data to a smaller interval. Note also that we here set the hyperparameters of the
genetic search, e.g., population size, to values we determined manually (cf. Ap-
pendix A). We leave a systematic (and costly) exploration of hyperparameters,
which may be able to achieve slightly better results, as future work. Generally,
however, we attribute the mismatch between the learned and the ground truth
model to the fact that, in most cases, there is no single model that exclusively
explains a given time series. Rather, it is known that reaction systems are not
identifiable [9], i.e., multiple models fit the same data, necessitating an informed
selection. This is why background knowledge, e.g., about the possible interac-
tions, known reactions, and model-level constraints, plays an important role in
ensuring that learned models are grounded in the (known) laws of science, and
are coherent with the current knowledge about mechanisms. To this end, evolib
enables the inclusion of model-level constraints, in addition to constraints on the
reaction level possible with (c-)SINDy. Here, we explored how both constraints
can be combined to limit reactions to occur within compartments while encour-
aging the inclusion of shuttling reactions between them. Future work may adjust
the fitness function to encourage libraries where the species/reactions match an
ontology or are aligned with information gathered from biological databases. In
fact, some methods, such as [1], approach the problem from the perspective of
knowledge rather than data by automatically constructing models from facts
found in literature databases.

Whereas a regression considering all possible reactions at once often leads
to very long model descriptions, the GA produced much more sparse solutions,
as it allows enforcing a certain maximum number of reactions. This leads to a
tradeoff between model complexity and goodness of fit. Limiting model com-
plexity results in humanly comprehensible models, but typically less accurate
predictions, which, however, may be beneficial in cases with low-quality data
(cf. the predator-prey case study in Section 5). Further, in contrast to the much
shorter model descriptions learned by evolib in our Wnt case study, the models
learned by c-SINDy could not be readily integrated with LSODA, yielding errors
regarding numerical precision. These may be attributed to the presence of sin-
gularities, extreme oscillations or due to the fact that LSODA is not switching
effectively between stiff and non-stiff regimes.

In our evaluation, we used relatively ideal conditions to test the principal ca-
pabilities of the approach. However, in a real-world scenario, measurement data
would be available only for a subset of species and be subject to noise. Handling
these scenarios is a major limitation of SINDy and, thus, also a limitation of
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our approach. Due to its relevance, there have been attempts to also include
unmeasured variables, e.g., by using dynamic mode decomposition (DMD) to
identify those variables before employing SINDy [6] or implicitly in a black-box
manner by training neural networks to act as correction terms [30].

In terms of execution time, we did not observe a speedup using the GA on
smaller libraries as opposed to c-SINDy on a very large library. Theoretically,
assuming coupled SINDy takes f(na) steps (na is the library size), its wrapping
in a GA results in cf(nb) steps for some nb<<na (nb is the sublibrary size). The
constant c is determined by the number of generations and individuals in each
generation. Note that the fitness calculations are easily parallelizable, reducing
the factor c. While not changing the complexity class, evolib may still provide a
speedup in practice when nb and c can be chosen small enough. Here, we work
with a first prototypical implementation and leave a comprehensive empirical
evaluation of the execution time performance as future work.

7 Conclusion

We demonstrated the use of a genetic algorithm together with an extension of
SINDy to the case of coupled differential equations, which allows learning com-
pact biochemical reaction models (with many species) from time-series data. Our
results show the benefits of the approach for two small and one very large reaction
system to be learned. In the smaller cases, the approach can recover the ground
truth model. For the case of identifying a very large Wnt model, where coupled
SINDy failed to learn models amenable to numerical integration, it learned well-
fitting parsimonious models, but they lack biological meaning. Thus, we believe
that including background knowledge (inductive bias) is essential to learning a
model that can serve as a useful theory to explain the mechanisms at work.
Our approach offers the ability to include background knowledge at the level
of the model as well as on the level of individual reactions. Although our first
and rather simple restrictions that enforced a compartment structure and en-
couraged shuttling reactions between compartments did not suffice to learn a
biologically meaningful Wnt signaling model, we will further pursue this line of
research as particularly promising. In addition, we plan to evaluate the method
in comparison to other methods for learning reactions, such as the Reactionet
LASSO [17] (e.g., by only considering the mean) or Reactmine [24]. For that pur-
pose, identifying a set of suitable benchmark models/data sets to test different
capabilities will be essential. In addition, to make these approaches widely appli-
cable in systems biology, the possibility of inferring (time series for) unmeasured
species needs further research. This may, for example, be done by including a
pre-processing step [6].
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J. N. Kreikemeyer et al.A. COMPLETE LIST OF EXPERIMENT (HYPER-)PARAMETERS

A Complete List of Experiment (Hyper-)parameters
parameter↓/model→ SIR Predator-Prey Wnt Wnt-X Wnt (cstr.) Wnt-X (cstr.)

replications 10
measurement points 100 78

measurement interval 0.0 – 1.0 0.0 – 2.0 16.0 – 500.0
measurement steps equidistant determined by LSODA

sublibrary size 2 3 60 20 60 20
population size 100 200

max steps 100 10000
crossover probability 0.8
mutation probability 0.2

crossover points 1 5
num parents 10

max. number of reactants 2
max. number of products 3 2

Table 1: Hyperparameters used for evolib. The random search and c-SINDy use
the same parameters where applicable. In particular, for the non-negative least
squares, the maximum number of iterations was limited to 108. Abbreviations:
X extended, cstr. constrained.

B Learned Model’s Trajectories for the Wnt Pathway

10−6

10−4

10−2

100

102

104

am
ou

nt

From Scratch From Scratch (Constrained)

0 100 200 300 400 500
time [min]

10−6

10−4

10−2

100

102

104

am
ou

nt

Extension

0 100 200 300 400 500
time [min]

Extension (Constrained)

Fig. 5: Results from simulating the models learned with evolib for the Wnt path-
way. The + symbols mark measurement points, and the lines are the trajectories
simulated for the 19 species. Note that, for clarity, we omit the labeling of species,
and only every second measurement point is shown. The integration of the (large)
models produced by c-SINDy resulted in errors due to numerical problems.
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C. LEARNED MODELS FOR THE WNT PATHWAY J. N. Kreikemeyer et al.

C Learned Models for the Wnt Pathway

Bcata + NucTCF 0.00022−−−−→ NucBcata + NucTCF
NrxnO + NucTCF 1.4−→ NucBcatc + NucTCF

Axinp + Bcati 8.4e−05−−−−→ 2Bcati
Axinp + Bcati 0.00025−−−−→ Axinp
Axinp + Bcata 1.3e−05−−−−→ Axinp + NrxO

NucBcati +Counter 7.4e−06−−−−→ DvlAxinu +Counter
ICAT + NucBcati 0.0055−−−−→ NrxnO + NucBcati

Axinu + Bcata 8.3e−05−−−−→ Axinu
NucBcatc 0.023−−−→ Dvli + NrxO

NrxO + ICAT 0.00065−−−−→ Bcati + DvlAxinp
Axinp + NrxO 1.5e−05−−−−→ Axinp + ICAT

Bcata + DvlAxinu 2.3e−06−−−−→ Bcati + NucBcata
Dvli + NucTCF 8.6e−06−−−−→ 2NucTCF

Dvli + NrxnO 1.4−→ Bcata + Dvli
NrxnO + NucTCF 3.6−→ NucBcati + NucBcatc
ICAT + NucBcatc 0.0019−−−−→ Bcati + Dvli

Dvla 7−→ Bcata + Dvla
NrxnO + DvlAxinp 0.9−→ NrxnO + DvlAxinu

NrxnO + ICAT 4.5e+02−−−−→ Axinp + NucBcatc
NrxnO + DvlNrx 0.0026−−−−→ NucBcata + NucTCF

DvlAxinu + NucBcati 2.8e−06−−−−→ Bcati + NrxO
Dvli + DvlAxinp 2.6e−06−−−−→ DvlAxinp + NucBcata

Bcati 9.3e−05−−−−→ Axinu + Bcata
Axinu + NrxnO 0.89−−→ Axinu + NrxO

ICAT 1.1e+02−−−−→ NrxO
Bcati + NrxnO 0.71−−→ NrxnO + NucBcata
Dvli + NrxnO 1−→ Bcati + Dvli

Bcata + NucTCF 7.5e−05−−−−→ NrxnO + NucTCF
Axinu + NucBcata 0.00015−−−−→ Axinu + NucBcati
Bcati + DvlAxinu 5.4e−06−−−−→ Dvli + DvlAxinu

Axinp + NucBcati 0.0002−−−−→ 2Axinp
NrxO + ICAT 0.0027−−−−→ DvlNrx + NucBcata
Dvla + ICAT 6.4−→ Dvla + NucBcati

NrxnO + NrxO 0.61−−→ ICAT + NucBcatc
NucBcata + NucTCF 0.00088−−−−→ DvlNrx + NucTCF

DvlNrx + ICAT 0.00037−−−−→ Bcata + ICAT
DvlNrx 6.4e−06−−−−→ Counter

Axinu + Bcati 1.6e−06−−−−→ Bcati + Dvli
NrxO 0.0041−−−−→ NucBcati

DvlAxinu +Counter 3.7e−05−−−−→ Bcati +Counter
Bcata + NucTCF 2.7e−05−−−−→ Bcati + Dvli

NucBcati 0.0043−−−−→ Bcata + NrxO
DvlNrx 0.0031−−−−→ NrxnO + DvlNrx

Dvli 0.0075−−−−→ DvlNrx(+ 9 more)

(a) Evolib from scratch

6e+02−−−→ Bcata
NucBcata 0.14−−→ Bcata

Axinp + Bcati 0.00021−−−−→ Axinp
Bcati 0.00011−−−−→

Axinu 0.03−−→ Axinp
NrxnO + Rosa 5e+02−−−→ NrxO

NrxO 0.02−−→ NrxnO
Dvli 0.0005−−−−→ Dvla

DvlAxinu 0.068−−−→ Dvla + Axinu
Counter 0.2−→ Counter + Rosa

1−→ Counter
Dvla + Axinp 0.075−−−→ DvlAxinp

Axinp + Bcata 0.00021−−−−→ Axinp
NucBcati 0.00011−−−−→

Dvla + NrxnO 22−→ DvlNrx
NucBcata + NucTCF 0.002−−−→ NucBcatc

Axinp 0.03−−→ Axinu
Axinp 0.0045−−−−→

NucBcatc 0.00011−−−−→
Bcata 0.055−−−→ NucBcata

DvlNrx + Rosa 3.2e+02−−−−→ Dvli + NrxO
Dvla + Axinu 0.075−−−→ DvlAxinu

Bcati 0.055−−−→ NucBcati
NucBcatc 0.014−−−→ NucBcata + NucTCF

DvlNrx 0.023−−−→ Dvli + NrxnO
NucBcatc 0.0004−−−−→ NucBcatc + Axinu

Dvla 0.5−→ Dvli
NucBcata 0.00011−−−−→

Bcata 0.00011−−−−→
Axinu 0.0045−−−−→
ICAT 0.055−−−→ NucICAT

NucICAT 0.14−−→ ICAT
DvlAxinp 0.068−−−→ Dvla + Axinp

Dvli + NrxnO 22−→ DvlNrx
NucBcati 0.14−−→ Bcati

NrxnO + NucBcati 0.0025−−−−→ DvlNrx + NucBcatc
4.1−→ Bcati + Rosa

Bcata + ICAT 0.0017−−−−→ ICAT
Bcati + ICAT 2.9e−06−−−−→ NrxnO + NucICAT

0.18−−→ Bcata + DvlNrx
NucBcati 0.00067−−−−→ Bcata + Bcati

Bcati 0.032−−−→ Bcata
Bcata + ICAT 0.098−−−→ Bcati + ICAT

NucBcati 0.00069−−−−→ 2NucBcati
DvlNrx + NucICAT 6.6e−06−−−−→ Bcata + NucICAT

1e+02−−−→ Rosa + NucTCF
DvlAxinp + NucTCF 2.7e−05−−−−→ Dvli + NrxnO

96−→ Rosa(+ 7 more)

(b) Evolib extension

6e+02−−−→ Bcata
NucBcata 0.14−−→ Bcata

Axinp + Bcati 0.00021−−−−→ Axinp
Bcati 0.00011−−−−→

NucICAT + NucBcata 0.1−→ NucBcati
Axinu 0.03−−→ Axinp

NrxnO + Rosa 5e+02−−−→ NrxO
NrxO 0.02−−→ NrxnO

Dvli 0.0005−−−−→ Dvla
DvlAxinu 0.068−−−→ Dvla + Axinu
Counter 0.2−→ Counter + Rosa

1−→ Counter
Dvla + Axinp 0.075−−−→ DvlAxinp

Axinp + Bcata 0.00021−−−−→ Axinp
NucBcati 0.00011−−−−→

Dvla + NrxnO 22−→ DvlNrx
2.5e+02−−−−→ ICAT
1e+02−−−→ NucTCF

NucBcata + NucTCF 0.002−−−→ NucBcatc
Axinp 0.03−−→ Axinu

NucBcatc 0.023−−−→
Axinp 0.0045−−−−→

NucBcatc 0.00011−−−−→
Bcata 0.055−−−→ NucBcata
Bcati 0.032−−−→ ICAT + Bcata

DvlNrx + Rosa 3.2e+02−−−−→ Dvli + NrxO
Dvla + Axinu 0.075−−−→ DvlAxinu

Bcati 0.055−−−→ NucBcati
NucBcatc 0.014−−−→ NucBcata + NucTCF

DvlNrx 0.023−−−→ Dvli + NrxnO
NucBcatc 0.0004−−−−→ NucBcatc + Axinu
NucBcati 0.032−−−→ NucICAT + NucBcata

ICAT + Bcata 0.1−→ Bcati
Dvla 0.5−→ Dvli

NucBcata 0.00011−−−−→
Bcata 0.00011−−−−→
Axinu 0.0045−−−−→
ICAT 0.055−−−→ NucICAT

NucICAT 0.14−−→ ICAT
2e+02−−−→ Rosa

DvlAxinp 0.068−−−→ Dvla + Axinp
Dvli + NrxnO 22−→ DvlNrx

NucBcati 0.14−−→ Bcati

(c) Ground truth

Fig. 6: The models inferred in the Wnt case study (unconstrained) compared to
the ground truth model. For the extension, the reactions above the line are fixed.
Only reactions with a rate above 10−6 are shown, and if applicable the number of
excluded reactions is shown in the lower left. Bolded reactions indicate an overlap
with the ground truth reactions. Note in particular how in (a) the Axin-induced
degradation of β-catenin and in (b) the synthesis of Ros was recovered, which
are both central components of the ground truth model of the Wnt pathway.
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DvlNrx + ICAT 1.1e−05−−−−→ DvlAxinp +Counter
Bcata + NrxnO 0.068−−−→ NucBcata + NucBcati
Axinp + Bcata 8.3e−06−−−−→ Dvli + NrxO

Bcata + NrxnO 0.11−−→ Bcati + DvlNrx
DvlAxinu 0.64−−→ Bcata + DvlAxinu
NucBcatc 0.01−−→ Dvli + ICAT

Axinp + DvlNrx 2.8e−06−−−−→ Axinp + NrxO
NucBcata 0.0058−−−−→ 2NucBcata

Axinu + NrxO 1.4e−06−−−−→ Bcata + DvlAxinu
Dvli + ICAT 0.008−−−→ Bcata + ICAT

Bcata + Rosa 2.9e+03−−−−→ DvlNrx + Rosa
ICAT 34−→ Dvli + DvlNrx

NucBcati + NucTCF 0.00028−−−−→ Dvli + DvlNrx
NucBcata + NucTCF 0.00071−−−−→ NucTCF

Dvla + ICAT 4.8−→ Dvla + NrxO
Bcati + ICAT 0.00061−−−−→ NucBcati

Axinu + Bcata 7.5e−05−−−−→ DvlNrx
Bcata + DvlAxinp 3.5e−06−−−−→ Dvli + DvlAxinp

Axinu + Bcata 7.5e−05−−−−→ 2Axinu
NucBcati + NucTCF 0.00021−−−−→ Bcati + DvlNrx

ICAT 76−→ NucTCF
NrxnO + DvlNrx 0.019−−−→ 2NrxnO
Axinu + DvlNrx 3.3e−06−−−−→ Axinu + Bcata

DvlNrx +Counter 3.8e−06−−−−→ Counter
2.5e+02−−−−→ DvlNrx

NucBcatc 0.0041−−−−→ Bcata + NrxO
DvlNrx + ICAT 0.00047−−−−→ Bcata + ICAT

Axinp + NrxO 2.2e−05−−−−→ Axinp + DvlNrx
NrxnO 3.5e+02−−−−→ NucBcata + NucTCF

ICAT 79−→ 2ICAT
Axinp + Bcata 7.7e−06−−−−→ 2Axinp

NrxnO + ICAT 1.9e+03−−−−→ Bcata + Dvli
NrxnO 7.8e+02−−−−→ Bcata + NrxO

NucBcata 0.12−−→ Bcata
Axinu + Bcati 0.00011−−−−→ Axinu

Dvla 7.7−→ Dvla + DvlNrx
NucBcata + NucTCF 0.00035−−−−→ NucBcati + NucBcatc

Bcata 0.047−−−→ NucBcata(+ 9 more)

(a) Evolib from scratch

6e+02−−−→ Bcata
NucBcata 0.14−−→ Bcata

Axinp + Bcati 0.00021−−−−→ Axinp
Bcati 0.00011−−−−→

Axinu 0.03−−→ Axinp
NrxnO + Rosa 5e+02−−−→ NrxO

NrxO 0.02−−→ NrxnO
Dvli 0.0005−−−−→ Dvla

DvlAxinu 0.068−−−→ Dvla + Axinu
Counter 0.2−→ Counter + Rosa

1−→ Counter
Dvla + Axinp 0.075−−−→ DvlAxinp

Axinp + Bcata 0.00021−−−−→ Axinp
NucBcati 0.00011−−−−→

Dvla + NrxnO 22−→ DvlNrx
NucBcata + NucTCF 0.002−−−→ NucBcatc

Axinp 0.03−−→ Axinu
Axinp 0.0045−−−−→

NucBcatc 0.00011−−−−→
Bcata 0.055−−−→ NucBcata

DvlNrx + Rosa 3.2e+02−−−−→ Dvli + NrxO
Dvla + Axinu 0.075−−−→ DvlAxinu

Bcati 0.055−−−→ NucBcati
NucBcatc 0.014−−−→ NucBcata + NucTCF

DvlNrx 0.023−−−→ Dvli + NrxnO
NucBcatc 0.0004−−−−→ NucBcatc + Axinu

Dvla 0.5−→ Dvli
NucBcata 0.00011−−−−→

Bcata 0.00011−−−−→
Axinu 0.0045−−−−→
ICAT 0.055−−−→ NucICAT

NucICAT 0.14−−→ ICAT
DvlAxinp 0.068−−−→ Dvla + Axinp

Dvli + NrxnO 22−→ DvlNrx
NucBcati 0.14−−→ Bcati

Dvla + NrxnO 7−→ Dvla + DvlNrx
NrxO 0.0094−−−−→ NrxO + Rosa
Bcati 0.032−−−→ Bcata + Bcati

NrxnO + Rosa 1.7e+09−−−−→ NrxnO
2.2e+02−−−−→ Bcati
26−→ Bcati + Rosa

Dvli + NrxnO 0.0011−−−−→ Bcata + DvlNrx
ICAT 3.7−→ Rosa + ICAT

Bcata + ICAT 0.1−→ ICAT
1e+02−−−→ NucTCF

NucBcatc 0.023−−−→ Rosa
NrxO + Rosa 14−→ Dvli + NrxO

NrxnO 6.2e+03−−−−→ NrxnO + Rosa
Dvli + Dvla 9.8e−06−−−−→ Dvla + Rosa

Rosa + DvlAxinp 6.9e+03−−−−→ DvlAxinp(+ 3 more)

(b) Evolib extension

6e+02−−−→ Bcata
NucBcata 0.14−−→ Bcata

Axinp + Bcati 0.00021−−−−→ Axinp
Bcati 0.00011−−−−→

NucICAT + NucBcata 0.1−→ NucBcati
Axinu 0.03−−→ Axinp

NrxnO + Rosa 5e+02−−−→ NrxO
NrxO 0.02−−→ NrxnO

Dvli 0.0005−−−−→ Dvla
DvlAxinu 0.068−−−→ Dvla + Axinu
Counter 0.2−→ Counter + Rosa

1−→ Counter
Dvla + Axinp 0.075−−−→ DvlAxinp

Axinp + Bcata 0.00021−−−−→ Axinp
NucBcati 0.00011−−−−→

Dvla + NrxnO 22−→ DvlNrx
2.5e+02−−−−→ ICAT
1e+02−−−→ NucTCF

NucBcata + NucTCF 0.002−−−→ NucBcatc
Axinp 0.03−−→ Axinu

NucBcatc 0.023−−−→
Axinp 0.0045−−−−→

NucBcatc 0.00011−−−−→
Bcata 0.055−−−→ NucBcata
Bcati 0.032−−−→ ICAT + Bcata

DvlNrx + Rosa 3.2e+02−−−−→ Dvli + NrxO
Dvla + Axinu 0.075−−−→ DvlAxinu

Bcati 0.055−−−→ NucBcati
NucBcatc 0.014−−−→ NucBcata + NucTCF

DvlNrx 0.023−−−→ Dvli + NrxnO
NucBcatc 0.0004−−−−→ NucBcatc + Axinu
NucBcati 0.032−−−→ NucICAT + NucBcata

ICAT + Bcata 0.1−→ Bcati
Dvla 0.5−→ Dvli

NucBcata 0.00011−−−−→
Bcata 0.00011−−−−→
Axinu 0.0045−−−−→
ICAT 0.055−−−→ NucICAT

NucICAT 0.14−−→ ICAT
2e+02−−−→ Rosa

DvlAxinp 0.068−−−→ Dvla + Axinp
Dvli + NrxnO 22−→ DvlNrx

NucBcati 0.14−−→ Bcati

(c) Ground truth

Fig. 7: The models inferred in the Wnt case study (constrained) compared to
the ground truth model. For the extension, the reactions above the line are
fixed. Only reactions with a rate above 10−6 are shown, and if applicable, the
number of excluded reactions is shown in the lower left. Bolded reactions indicate
an overlap with the ground truth reactions. Note in particular how in (a) the
shuttling of β-catenin in and out of the nucleus and in (b) the production of
TCF was recovered.
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