Universität Rostock

Traditio et Innovatio

Southampton

Developing Agent-Based Migration Models In Pairs

Approach:

Committing too early to a specific model architecture, design, or language

Entries

Cities

Abstract Model:

• Formation of migration routes with limited information about the environment.

- environment can later become costly.
- To reveal crucial features and trade-offs for future implementation and for the design of modeling formalisms, we have implemented two instances of the same model using different approaches.

resources \in [0, 1] control \in [0, 1] Transport Links distance $\in \mathbb{R}$

Exits

- Migrants enter the graph world on one side, and try to find a path to an exit.
- type (- slow | fast) friction C to 11
 Migrants must decide to: explore, make contacts, exchange knowledge, move to a neighboring location.

Simulation Model 1: Julia

A modern general purpose language (GPL)

- Discrete time steps: iteration through all agents every time step to execute their behavior.
- Modeled processes happen every step, or have fixed probabilities.

model logic:

function step_agent_move!(agent, world, par) agent.in_transit = true loc = next_step(agent, world, par) link = find_link(agent.loc, loc) link.count += 1 # update traffic counter costs_move!(agent, link, par) explore_move!(agent, world, loc, par) move!(world, agent, loc) end

connormonding schoduling logi

Simulation Mode 2: ML3

An external domain-specific language (DSL) for agent-based modeling

- Behavior modeled using stochastic rules (*who-when-what*-triplets) in continuous time.
- Decision-making based on "competing risk" approach: options with higher rates are chosen with higher probability.

Mi	grant	<pre># who: affected agent type</pre>
 @ ->	! ego. in_transit	<pre># and guard condition</pre>
	<pre>ego.move rate()</pre>	<pre># when: exponential rate</pre>
	<pre>ego.in_transit := true</pre>	<pre># what: effect</pre>
	<pre>ego.destination := ego.destination</pre>	<pre>decide_destination()</pre>
	ego. capital -= ego. move_	_cost(ego .destination)

Scheduling: Continuous-time Markov Chain semantics 1) System is in state s at some time t:

<pre># Cor funct if els els ste age end</pre>	<pre>inding scheduling logic: tion step_agent!(agent, model, par) decide_stay(agent, par) # model logic step_agent_stay!(agent, model.world, par) se step_agent_move!(agent, model.world, par) d ep_agent_info!(agent, model, par) ent.steps += 1 # required for analysis</pre>	2) Waiting ti from an e 3) The earlie discarded	mes are drawn for all events (pairs of agent and applicable rule) exponential distribution parameterized with the rate: e^{1} e^{2} e^{3} e^{4} est event is executed, yielding a new state s', all others are d: s'
X	Model and execution are tightly interwoven.	Separation of Model and Simulator	The declarative model description is executed by a separate simulator.
	Due to interwoven model and simulation, additions make changes in many locations necessary.	Composability and Extendability	White box composition or extension by adding behavioral rules. Changes are typically localized in one or a few rules.
	As general purpose language, Julia has a rich set of features allowing for maximum flexibility.	Flexibility	While ML3 is very expressive compared to DSLs in other areas, many features of GPLs (e.g., structures types, data structures) are not available.
	Extensive ecosystem: IDEs, debugger, REPL, documentation, libraries, user community,	Language Infrastructure	Only rudimentary tool support. Few users. Documentation mostly in form of publications and existing models.
	No specific support for simulation, but enough veritility		Simulation experimentation supported "out of the box"

Simulation experimentation supported "out of the box" via a binding to SESSL, a DSL for defining and

Ample versatility facilitates an efficient implementation. Ca. 10 s per run.

Runtime

Simulation Infrastructure

executing simulation experiments.

Lack of language features (see flexibility) leads to inefficient implementation of knowledge representation and information exchange. Ca. 1.5 h per run.

Conclusions:

- Applying a DSL such as ML3 has significant advantages. However, the limitations ML3 make its application impractical for this model.
- Extension of ML3 to make it applicable would require adding many GPL features. Continued development as an internal DSL might be appropriate.
- Knowledge representation and exchange proved to be challenging both conceptually and in implementation. DSL support would be advantageous.

O. Reinhardt, M. Hinsch, J. Bijak, A. M. Uhrmacher "Developing Agent-Based Migration Models in Pairs" Winter Simulation Conference 2019 (to appear)

Oliver Reinhardt, Adelinde M. Uhrmacher

VISUAL AND ANALYTIC COMPUTING

University of Rostock | Albert-Einstein-Str. 22 | 18055 Rostock | Germany

Martin Hinsch, Jakub Bijak SOCIAL STATISTICS AND DEMOGRAPHY University of Southampton | University Road | Southampton SO17 1BJ | UK