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Abstract

Developing simulation models is an intricate process, particularly, if
the goal is to develop a comprehensive simulation model of international
migration. Therefore, suitable computational support is needed. This
may involve using domain-specific modeling languages that allow a com-
pact model description and a composite model design, and methods to
make a model’s foundations in data sources and theories, and data gen-
erating processes explicit. In this paper, we compare the encoding of
a routes-rumors model of migration in ML3, a domain-specific model-
ing language for demography with a focus on modeling linked lives in
continuous time, and the encoding in the general purpose language Julia.
Additionally, we present a provenance model for the routes-rumors model,
which relates the diverse artifacts and processes involved in generating the
model, including the diverse simulation experiments. The examples elu-
cidate the potential and requirements of the methodological approach for
facilitating the generation, maintenance, and reuse of simulation models.

1 Introduction
Migration is one of the most uncertain demographic processes. Migration pro-
cesses are not only influenced by changes of the physical, social, and political
environment, which alone are already difficult to predict, but also by a sequence
of individual decisions that depend on the individual, and their own experiences.
This inherent complexity must be reflected in any sufficiently accurate model of
human migration [23], which provides a formidable challenge for any modeling
and simulation of migration processes.

Therefore, no single model will suffice. Instead, multiple models which focus
on different aspects of migration need to be developed and combined. These
models have to be be based on various theoretical foundations, sources of data,
and, last but not least, psychological experiments. Simulation experiments for
calibration, validation, sensitivity and uncertainty analysis will help refining
the simulation models, which will undergo various changes within this process.
Due to the complexity of the model building processes, suitable computational
support is required.
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In this work we will focus on a) the role of declarative domain-specific mod-
eling languages to support a compact description and a composite design of
simulation models and b) explicit means to clarify the relation between sim-
ulation models and other artifacts that have been used during developing a
simulation model.

To illuminate our methodological approach, we will use the first model de-
veloped in the project, the routes-rumors model (details provided in a separate
paper on model design specification), which is concerned with how migration
routes form. Thereby, it is of interest, how migrants get, perceive and share in-
formation about the resources and dangers of the landscape they move through,
and how they decide on their movement given this information.

2 Domain Specific Modeling Languages
Designing and implementing a complex simulation model from scratch is a dif-
ficult task, requiring deep knowledge of the modeled system as well as software
development skills. Domain specific modeling languages (DSMLs) are a means
to ease this task. A domain specific language is a programming language that
is not designed as a general-purpose tool, but to solve specific problems of a
specific application domain [26]. A DSML is designed to implement simulation
models in a specific domain. It makes use of domain metaphors (e.g., agents
or social networks), focuses on supporting certain model properties (e.g., grid
space or continuous space), and contains build-in solutions for typical problems
of the domain (e.g., aging and age-dependent behavior).

DSMLs have been developed for and successfully applied in a wide variety
of application domains, e.g., in biochemistry [7] or digital systems [11]. For
agent-based models in discrete time and grid space, NetLogo [22] is commonly
used. The Modeling Language for Linked Lives (ML3, [21]), was developed for
continuous-time agent-based models with dynamic social networks in the social
sciences, especially in demography. Many of these languages, e.g., [1, 8], have a
formal semantics, mapping the model onto some kind of mathematical structure,
e.g., a Continuous-Time Markov Chain.

To demonstrate the approach, Figures 1 and 2 show a snippet of the routes-
rumors model implemented in Julia, a general purpose programming language,
and the aforementioned DSML ML3. Both snippets show the movement of a
migrant through the landscape: The migrant decides for a target in the environ-
ment of their current location (this decision process is not shown, but happens
inside the function called in line 4 (Figure 1) and line 3 (Figure 2)). They move
to that location and the cost of that movement is deducted from their capital.
Apparently, the ML3 implementation is much more concise. This can mostly
be attributed to two reasons: Firstly, all function calls in the Julia code have a
list of parameters including the model state (world), the migrant (agent), and
the model parameters (par). As those are common concepts to all simulation
models, in ML3, they need not be handled explicitly. Secondly, the Julia snippet
contains the actual movement logic (line 1–9, line 13) and a corresponding bit
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1 Migrant
2 | ego.capital >= 0
3 @ ego.move_rate()
4 -> ?target := ego.decide_move_target(),
5 ego.capital -= Migrant.move_cost(?target),
6 ego.location := ?target;

Figure 1: An excerpt of the ML3 implementation of the routes-rumors model
showing the migrant’s movement.

1 # model logic:
2 function step_agent_move!(agent, world, par)
3 loc = decide_move(agent, world, par)
4 if loc == Pos(0, 0)
5 return
6 end
7 costs_move!(agent, find_location(world, loc.x, loc.y), par)
8 move!(world, agent, loc.x, loc.y)
9 end

10

11 # corresponding scheduling logic:
12 function step_agent!(agent :: Agent, model::Model, par)
13 if agent.capital < 0.0 || decide_stay(agent, par) # model logic
14 step_agent_stay!(agent, model.world, par)
15 else
16 step_agent_move!(agent, model.world, par)
17 end
18 step_agent_info!(agent, model, par)
19 end

Figure 2: An excerpt of the Julia implementation of the routes-rumors model
showing the migrant’s movement.

of scheduling logic (lines 11–19) that makes sure that the movement logic is ex-
ecuted at the appropriate time. These two parts of logic are tightly interwoven.
In ML3 the scheduling logic need not be implemented by the modeler, it is part
of the simulator.

This separation of the model from the simulator, see [25], is one of the central
advantages of using a DSML. Using a general purpose language, the modeler
has to implement the model logic, e.g., the decision processes of agents, and in
addition the execution logic, e.g., scheduling events or advancing time. Using
a DSML, the model logic remains the responsibility of the modeler, while the
simulation logic is implemented by the developer of the modeling language. In
the ML3 example in Figure 1, the modeler only specifies which agents are able
to move (line 2) and with what rate they move (line 3), corresponding to the two
conditions in line 13 of the Julia snippet, but the actual scheduling is handled
transparently to the modeler. A clear separation between model and simulator
makes the model implementation more succinct, and therefore more accessible.
As there is less implementation effort for the modeler, there is also less room for
errors. Additionally, as the simulation logic is now independent of the model,
it can be reused for multiple models. This allows for putting more effort into
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implementing and maintaining the simulation logic, improving software quality
and enabling the implementation of more efficient advanced simulation algo-
rithms [9]. Thereby, the focus on a specific application domain allows for the
simulation algorithm to exploit domain-specific properties of models for a more
efficient execution. The formal semantics unambiguously specifies the semantics
of a simulation model defined in this language and also serves as a blueprint for
designing the simulator.

More complex simulation models are typically composed of simpler models
[15]. In a model implemented from scratch in a general programming language,
a composite model design is more difficult to realize, as model logic as well as
execution logic has to be considered. In ML3, a model is composed of differ-
ent agents of various kinds, which encourages composite model design at agent
level. Additionally, each agent’s behavior is the result of composing a set of
independent stochastic rules, each governing a specific part of the agent’s be-
havior, enabling composite design at the level of behavioral patterns. Model
components can be developed, calibrated, and validated separately, to be later
composed to the complete model [16, 17]. A composite design of simulation
models also facilitates exchanging model parts, for example, to compare differ-
ent decision-making strategies in a multi-model approach as proposed in [4].

All together, these properties of DSMLs ease development and implemen-
tation of the model, its later extension, and, due to improved accessibility, its
dissemination. With an external DSML like ML3, where the DSML is a com-
pletely independent language, this comes at a cost of reduced flexibility. Model
properties and features not accounted for by the DSML might be difficult or im-
possible to realize. Internal DSMLs, e.g., [10], can offer a middle ground between
external DSMLs and general purpose languages. Here, the DSML is embedded
in a general purpose host language. Models implemented in an internal DSML
are host language programs. Consequently, host language development tools
can be used, and the modeler might fall back to using host language features
if the DSML is too restrictive. As a trade-off, the syntax of an internal DSML
must be compatible with the host language, often leading to less concise and
accessible model code. Also, the advantages of using a DSML will be partially
lost if the modeler has to make extensive direct use of the host language.

3 Managing Provenance
To understand and to trust a simulation model, ample information, e.g., about
the model, its foundations, and its validation, is crucial. Hence, the simulation
community has developed several standards to manage it. Most commonly ap-
plied in agent-based modeling is the ODD protocol (Overview, Design concepts,
Details; [5]). The protocol prescribes certain content and structure for a textual
description of the model, e.g, containing the model’s purpose, the model entities
and processes, model components, and input data. However, ODD has signifi-
cant shortcomings. An ODD document only describes a single version of a single
model, having an iterative modeling process or having multiple interdependent
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models is not supported by the standard. Also, the documentation of simula-
tion experiments is not addressed. For the modeler, writing and maintaining
an ODD document, which amounts for dozens of pages of text for a complex
model, is a significant burden. Finally, a verbal description is often imprecise,
and, as it has to be maintained manually, error-prone.

Provenance models offer a more structured representation of this informa-
tion – provenance being defined as the “information about entities, activities,
and people involved in producing a piece of data or thing, which can be used
to form assessments about its quality, reliability, or trustworthiness”[6]. Using
the Open Provenance Model standard (OPM, [14]), provenance information is
described as a directed graph. Nodes represent artifacts, i.e., digital represen-
tations of entities, e.g., models, model components, or data sets, and processes,
i.e., activities performed with artifacts, generating new artifacts, e.g., extending
a model, or conducting an experiment. Edges represent relations between the
nodes, and edges between different types of nodes represent different kinds of
relations, most importantly:

• an artifact is used by a process, e.g., a simulation model is used, when a
simulation experiment is performed

• an artifact is generated by a process, e.g., when a simulation experiment
is performed, some output data is produced

Managing the provenance of data has been researched for at least two decades,
and a variety of software tools and platforms have been developed, e.g., Fairdom
[24] and VisTrails [2]. However, in these approaches, the simulation model is
only viewed as part of the provenance of the simulation data. The provenance
of the simulation model itself, i.e., the process of creating the simulation model,
has only recently been put into the focus [19, 20].

Figure 3 shows a mock-up example, of how a provenance model for the
routes-rumors model could appear. In a complete provenance model, all the
artifacts and processes would be annotated with information about them, and
the relations would be annotated with the roles the nodes have in the rela-
tion. The initial version of the routes-rumors-model is depicted as the artifact
RR0. It is produced by composing (process comp.) several model components,
e.g., the landscape the migrants move through Cspace, the information exchange
Cinfo, or the migrant’s decision-making Cdec. Please note, that this is a rather
high level view of the modeling process, focusing on the different model com-
ponents and their foundations, but ignoring the evolution of the model and its
components over time. Depending on the questions the provenance model shall
answer, a more abstract or more detailed view might be advantageous. The
provenance of the decision component is depicted in more detail. It is created
by parameterizing (par.) a preliminary unparameterized version Mdec, which
itself is created by some (again rather abstract) modeling process (mod.) based
on Prospect Theory (PT ) [12], as the psychological theory of decision-making
at its heart, and other foundations.
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Figure 3: A mock-up provenance model for the routes-rumors model. The
figure only shows an excerpt of a potential provenance model, and omissions are
marked with ". . .". All the artifacts and processes are explained shortly in the
text.

Furthermore, the provenance model shows the origin of one of the parameter
values (or one set of parameter values) p1. It is estimated (est.) from a data set
Ddec, which was produced in a psychological experiment. This experiment is
shown as a process (exp.), which is based on Prospect Theory (PT ) and some
other foundations, and produces the data as well as a documentation of the
experiment (PEdoc). Thereby, we have abstracted from the experimentation
process, i.e., designing, preparing and performing the experiment, and put an
emphasis on its most important outputs: the data and the documentation,
which allows to assess the data and reproduce the experiment.

Finally, a provenance model can include simulation experiments, which, for
example used for calibration and validation, form an integral part of a simulation
model’s provenance. In Figure 3, a possible calibration experiment conducted
with the routes-rumors model is shown on the right side. The experimentation
is shown as a process (cal.), which uses the initial version of the routes-rumors
model RR0 and some input data Dcal as calibration target, and produces a cali-
brated version of the model RR1 and a specification of the conducted simulation
experiment SEcal. Here, experiment specification means any set of instructions
that allows to repeat the steps of the experiments and reproduce the results.

While a provenance model can be used to give a graphical overview about a
simulation model’s structure and origin, as has happened here, its true purpose
is a more systematic computational handling of that information. Inference
mechanisms such as the query language OPQL [13] allow for answering ques-
tions about the model’s provenance, e.g.: Which artifacts depend on a certain
data set in which we have detected an error? What data was used for calibrating
the model? Or, what theoretic foundation justifies a certain model mechanism?

6



Also, common patterns in provenance models can be exploited. For example,
the pattern on the right side of Figure 3 (simulation experimentation process
producing an experiment specification) can be exploited to automatically gener-
ate a package containing all necessary information to reproduce the simulation
experiment. Thereby, the experiment specification and all artifacts used by the
experimentation process have to be included. Executing the steps in the experi-
ment specification should then reproduce the result artifact, here the calibrated
model. If the experiment specification is executable, e.g., using a domain-specific
language for simulation experiment specification [3], the process of reproducing
the results can even be automated. Examples of such executable packages of
simulation experiments using a model of migration and a model of social care
can be found in [18].

4 Open Questions and Next Steps
With domain specific modeling languages and provenance models, we have pro-
posed two computational methods to ease managing the intricate process of
modeling migration. However, open questions remain, both regarding basic
methodology and the application to migration research.

As DSMLs are always designed for a specific kind of simulation models, the
choice of DSML has to be carefully considered. An unsuitable DSML that does
not account for central properties of the simulation model does not help but
hinder model development. For migration modeling, important criteria might
include spatial resolution, e.g., grid-based, graph-based or continuous space,
temporal resolution, e.g., discrete or continuous time, or the complexity of the
agents’ learning and decision-making processes. In the next stages of the project,
we will ultimately compare the Julia-implementation of the routes-rumors model
with an equivalent implementation in ML3, which we chose as a candidate for
a DSML. This will guide us in finding the right DSML to use, to expand upon,
or, if no such language exists, to develop.

While provenance models can be constructed manually, as has happened in
this example, the formal structure of provenance models allows for automatic
or semi-automatic capturing and management of provenance information. To
that end, an ontology of modeling and simulation provenance is necessary. As
a first step, central artifacts as well as the processes and their relations need to
be identified. In [19, 20], a set of artifacts and processes relevant for simulation
studies has already been identified (see also Figure 3). Sources to collect prove-
nance information could then be found in annotations to the simulation model,
psychological experiments, and data, in scripts that execute the simulation ex-
periments, in version control systems, or by monitoring the modeler’s workflow.
Many of these sources will provide provenance information on a relatively fine
level of granularity, resulting in very large provenance graphs. To handle these
provenance graphs effectively, techniques for aggregating on demand will become
necessary.
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