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Abstract. The validation of multi-level models in demography or so-
ciology is a challenging task. Typically, to develop such a model, we
speculate at micro level and calibrate at macro level. If possible, the mi-
cro level is rooted in established theories and some data. To increase the
trust into the model, diverse simulation experiments are executed to ex-
plore the behavior of the model and to check its plausibility. Thus, these
simulation experiments present an important information about the va-
lidity of the model, similarly as the data used for calibration, as input
for the model, and for testing its predictiveness. Multi-level models are
rarely developed from scratch but by reusing existing models, e.g., by
extending or composing them, or for cross-validation. These models and
their validity provide further details about the validity of a multi-level
model. Thus, a multitude of artifacts contribute intricately related to the
final multi-level model and our “gut feelings” about it.
To make these artifacts and their relations explicit and accessible, we will
apply a declarative formal modeling language for simulation, a declar-
ative language for specifying and executing diverse simulation experi-
ments, and a provenance model to relate the diverse artifacts in telling
the validation tale of an agent-based migration model.
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1 Introduction

Many natural systems are hierarchically organized, e.g., cell biological systems
from proteins and cells up to organs, or social systems from individuals and so-
cial groups up to societies. Thereby, the lower level influences the upper level
and vice versa. These up- and downward causations are central for multi-level
systems and their modeling [37]. Multi-level models in the social sciences gen-
erally consist of micro-level entities, often individual persons, and higher level
actors like households, or entire societies. Changes at population level depend on
the action and interaction of individuals, social groups, and families, as they are
embedded in their macro-level context. For example, the aggregate-level distri-
bution of age at marriage can be explained through the process through which
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individuals decide whom and when to marry. However, the context, the common
marriage age in a society, does not only form due to the decisions at micro level
but also influences the decision of individuals. Thus, we find both upward and
downward causation at work in demographic systems.

Based on the work of Colemann [13], Billari [8] identifies a two-stage pro-
cess as essential for developing demographic models. In a first step, an unusual
phenomenon is observed in the macro-level data. Often phenomena cannot be
explained by only referring to the organizational level at which they have been
observed: “Explanation of observed behaviour is not possible with reference solely
to the spatial-temporal scale at which the observation was made” [54]. There-
fore, as a second step, a hypothesis about the unobserved micro-level actions and
interactions of individuals is formed, which shall replicate the macro-level ob-
servation. A wide range of demographic simulation models follows this pattern,
e.g., for fertility prediction [17], migration [25,28], or partnership formation (e.g.
the Wedding Ring [6,7], marriage markets [56]).

Validation is an important part of the modeling and simulation life cycle, as
validation helps deciding whether a useful approximation of the system has been
achieved, and directs a model’s further refinement and enrichment, or as stated
by Osman Balci: “Model Validation is substantiating that the model, within
its domain of applicability, behaves with satisfactory accuracy consistent with
the M&S objectives. Model validation deals with building the right model.” [2,
p. 135]. Clearly validation is an approximative process, with which the trust
into a model is successively increased and, correspondingly, different approaches
exist. Zeigler defines three levels of validity [55]: replicative validity or historical
validity, i.e., the model reproduces data which has been observed from the real
system (retrodiction), predictive validity, where a model produces data before it
is observed from the real system, and structural validity, where the model reflects
the structural relations of the real system. Troitzsch’s discussion [49] about the
question, “whether a theory which predicts empirical observations correctly at
the same time explains what it predicts”, deals with the difference between the
second and third level of Zeigler’s approach: explaining being interpreted as
“showing how things work”. The replicative validity is also called calibration of
the model, and predictive validity refers to testing whether the model is able to
reproduce data it has not seen, i.e., been trained with, before.

Data is obviously central for model validation, i.e., as model input, for cali-
bration, and to test its predictive power. In any case, a thorough analysis of the
model, its structure and its behavior, furthers the trust into the model. Therefore,
a plethora of methods are available. Non-experimental approaches for inspect-
ing a model’s content and structure, e.g., by code walkthrough. Other methods
focus on a model’s dynamics, e.g., by trace inspections and analysis methods.
Some of these methods rely on data to compare the model with, or on other sim-
ulation models whose dynamics the model should converge to or diverge from
[48], some employ behavioral requirements specified as temporal logics [41], and
some might analyze the sensitivity to changes in parameter values, screening the
model’s behavior [29]. Thus, a lot of different validation procedures, some non-
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experimental, some experimental, are applied to a model for validation. Many of
these procedures rely on other artifacts. To assess the range of questions that a
model is likely to provide valid answers for, the accessibility of this information
is of vital importance, and, given the diversity of validation processes and arti-
facts, anything but trivial. In the following, we will explore how domain-specific
languages for modeling, for specifying simulation experiments, and for keeping
track of provenance allow us to approach this problem. We will demonstrate this
based on retracing part of the development process of a concrete demographic
model.

2 Migration - Complex Decision Processes

The model presented by Klabunde et al. [27,28] explores the hypothesis that in
a critical phase approximately between the ages of 18 and 40, individuals make
a series of important life decision, e.g. to get married or to have children, with
which the decision to migrate competes. In simulations it is tested whether based
on this micro-level hypothesis the observed age pattern of migrants (macro-level
data) can be explained. Thereby, the linked life courses of individuals are in the
focus. This includes marriage, fertility, and mortality of individuals, which are
governed by stochastic rates, as well as income and expenses. The migration
decision process itself is modeled based on the Theory of Planned Behavior
[1]. The assumption is, that the decision to migrate is made in multiple stages,
through which every potential migrant goes (see Figure 1): an intention is formed,
plans and then preparations are made, and finally the migration is attempted.
Each agent has an intention to migrate, which, in accordance with the Theory
of Planned Behavior, is derived from their attitude towards migration, their
beliefs about social norms regarding migration, and their beliefs about behavioral
control regarding migration. Those three factors are influenced by the agent’s
personal situation and his or her environment. A total of eight free weighting
parameters determines the strength with which different aspects influence the
migration intention. Finally, the migration intention governs how fast the agent
proceeds through the stages of the decision process, as shown in Figure 1.

The model was then applied to the case of migration from Senegal to Europe.
To this end marriage, fertility, mortality, income, and expenses were estimated
from data. For marriage a Coale-McNeill model [12] was fitted, using data from
the Demographic and Health Survey of Senegal (DHS) for individuals in Sene-
gal, and from the MAFE survey (Migration between Africa and Europe) [4]
for individuals who migrated. The individuals are then paired by employing a
marriage market [56]. Fertility was also estimated from DHS and MAFE data.
For mortality a Heligman-Pollard model [24] was fitted to data from the UN
World Population Prospects 2015. Income is taken from IMF data, consumption
from World Development Indicators. An initial population was sampled from the
1988 Senegal census. Initial wealth was estimated from data by Davies et al. [15]
By adjusting the 8 free parameters the model was then calibrated to reproduce
the distribution of the age at migration and the distribution of the time passed
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Fig. 1: The stages of the migration decision process. When a person is born, they
start in the "no intention" stage. When they reach a certain age, they enter the
intention formation process. As long as the migration intention is positive, they
advance through the stages, until they attempt migration. The waiting times
until hey advance are stochastic and depend on the strength of their intention.
When their intention gets negative, they leave the decision process.

between starting to plan migration and the actual migration attempt observed
in the MAFE survey. Furthermore, a sensitivity analysis of the model was per-
formed, to determine how changes of the empirically estimated parameters affect
the result of the calibration.

A preliminary analysis of 213 papers in the Journal of Artificial Societies
and Social Simulation (JASSS) since 2011 by Troitzsch [50] revealed that 19.2%
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of them compare quantitative simulation results to quantitative empirical data,
while another 17.4% discuss the necessity of such comparison. Our model be-
longs clearly to the current minority of papers published on agent-based social
(or demographic) simulation as it relies on diverse data sets for calibration.
In addition, it uses theories, and other models. Although to test the assumed
decision-making mechanisms at micro level further efforts are required, e.g., con-
trolled cognitive experiments [14], a lot went already into developing the model
and substantiating the claims made. The rest of the paper will be on methods
to make these efforts more easily accessible and, thus, assessable.

3 Domain specific modeling languages

To establish trust in a complex multi-level simulation model it is necessary to un-
derstand how the model works. Therefore, a thorough and accessible description
of the model is needed. Grimm et al. [20] proposed a standardized protocol, the
ODD protocol, for the structured textual description of agent-based simulation
models. The protocol is widely adopted, and is also recommended for uploading
agent-based models in model repositories such as the OpenABM model reposi-
tory. The motivation for ODD has been that the implementation of agent-based
models are often difficult to understand, as models are rather lengthy and bur-
dened with simulation details which dilutes the essential mechanisms how a
model works. Domain specific modeling languages are aimed at bridging a gap
between documentation and implementation of the model, with the ultimate
goal to provide an executable documentation. Practical expressiveness, i.e., how
easy is it to specify a model of a domain in the language and can also more com-
plex mechanisms be expressed, and succinctness are central requirements for the
design of domain-specific modeling languages. Whereas the former is difficult to
measure requiring dedicated user studies[32], an indication for the later is the
used line of code.

ML3 is a domain-specific modeling language specifically designed to allow
a succinct and understandable implementation of continuous-time agent-based
models with dynamic social networks, such as the migration decision model [53].

The main entities of models implemented in ML3 are agents, which are inter-
connected via dynamic links. In Figure 2 the definition of the agent type Person,
representing the migrants, and of all types of links between persons are shown.
Persons are characterized by a set of typed attributes, e.g., their sex (line 2),
their income (line 3), or the stage of the decision process they are currently in
(line 5). In addition to the explicitly specified attribute, every agent has an at-
tribute age, describing the age of the agent. The age attribute is automatically
0, when the agent is created, and updated when time passes. The link types
define how the social network of persons is shaped. Every defined link has two
directions, which are read from left to right, and from right to left respectively.
The link definition in line 15 defines that every person can have zero or more
persons as their children. Conversely, those children have exactly two parents.
ML3 ensures that those two directions always match. E.g., if person B is added
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as a child of person A, A is automatically added as a parent of B. Similarly,
the following two lines define the partner and friends link. Agents can not only
describe persons, but also higher level model entities. In this model, two further
agent types Household and Address, represent households and places. The associ-
ation of persons to households and the neighborhood relationship of places are
also realized with links.

1 Person(
2 sex: {"m", "f"},
3 income: real := 0,
4 mortalityModifier: real := 1,
5 migrationStage: {"not viable", "intention" , "planning", "preparation", "

migrated", "exit"} := "not viable",
6 migrationAttempts: int := 0,
7 failedMigrationAttempts: int := 0,
8 status: {"child", "adult", "retired"} := "child",
9 canAffordMonths: int := 0,

10 canNotAffordMonths: int := 0,
11 migrationAge: real := 0,
12 migrationStartAge: real := 0
13 );
14
15 parents:Person[2] <-> [0-]Person:children;
16 partner:Person[0-1] <-> [0-1]Person:partner;
17 friends:Person[0-] <-> [0-]Person:friends;

Fig. 2: The ML3 declaration of the agent type Person, and the three possible kinds
of links between persons.

Together, the agent type and link definitions describe how a state of the
model looks like, i.e., what kinds of agents there are, and how they are intercon-
nected. In addition to that, we have define how the model state evolves, i.e., how
the agents act. In ML3, the behavior of agents is governed by stochastic rules,
which are described as guard -rate-effect triples. In Figure 3 the rule that governs
fertility is shown as an example. It describes that women in a certain age range
may get a child. The first part of the rule is the guard, in line 2 beginning with a
vertical bar. It specifies, to whom the rule applies, by giving a list of conditions
the agent must fulfill. Agents are only subject to a rule, when they fulfill the
guard condition. In this case, persons whose sex attribute has the value "f", for
female, and whose age is in a range defined by the constants minFertilityAge and
maxFertilityAge. Here, the keyword ego refers to the agent for whom the guard is
evaluated, similar to this in many object-oriented programming languages. The
second part of the rule, the rate, is denoted in line 3. It specifies, when the rule is
applied. The value of the rate expression defines the (possibly time-dependent,
as the rate might depend of the agent’s age or the global time) rate parameter
of an exponential distribution. From this distribution a waiting time for every
pair of agent and applicable rule is drawn. The agent-rule pair with minimal
waiting time is then executed. Here the rate is defined through a function that
encapsulates the rater complex calculation of a womens current stochastic rate
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of childbirth depending on her age and the number of children she already has.
That way, the rule itself remain succinct, which makes its general function (de-
scribing childbirth) easier to read, while the details can be looked up if necessary.
Finally, the third part of the rule, the effect (line 4 - 10), describes what happens,
when the rule is executed. In this case, a new agent is created, it’s attributes and
links are initialized, and it is assigned a household and a place where it lives.

1 Person
2 | ego.sex = "f", ego.age >= minFertilityAge, ego.age < (maxFertilityAge + 1)
3 @ ego.birthRate()
4 -> ?child := new Person(
5 sex := ["m", "f"].random(),
6 parents := ego + if ego.isMarried() then [ego.partner] else [],
7 migrationStartAge := normal(meanMigrationStartAge, 1)
8 ),
9 ?child.moveToHousehold(ego.household),

10 ?child.moveToAddress(ego.address);

Fig. 3: The ML3 rule that describes the fertility component of the model. Female
persons in a certain age range might get a child.

In comparison with the original model implementation using NetLogo, the
implementation in ML3 has several advantages. Firstly, model and simulation
algorithm are strictly separated. In ML3, the modeler only has to define stochas-
tic rules. The actual scheduling, the selection when which rule is applied, is done
by a separate simulator, that has been implemented by the developers of the
language. In the NetLogo implementation, this scheduling had to be done man-
ually, using a continuous time extension [47]. This separation of concerns makes
the model description much more succinct (about a seventh of the length) and
readable. As less implementation has to be written, there is less room for errors.
Also, it makes the scheduling logic reusable, allowing to put more effort in im-
plementing and testing simulation algorithms, enabling the implementation of
more efficient advanced simulation algorithms [43].

Separation of concerns does not only apply to model and simulation logic,
it also applies to the different components of the model. The stochastic rules
that describe behavior in ML3 operate separate from each other in parallel. The
different model components that are concerned with different processes operating
in parallel, e.g., the fertility component (Figure 3) and the migration decision
process (Figure 4), can be implemented as separate sets of rules. The separation
of conceptually separate components is easily uphold in the implementation. Not
only does this again contribute to an easier identification of mechanisms how
the model works, it is also feasible to exchange component models by simply
exchanging the corresponding rules. That way one could, for example, compare
different decision process components in a multi-model approach, as proposed
by Gray et al. [19]. Additionally, the stochastic rules allowed us to implement
the transition through the stages of the transition process very naturally. The
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conceptual model of the decision process (Figure 1) defines stages an agent can
occupy, and the transitions to other stages they can make from each of those.
Our implementation (Figure 4) reflects this structure very directly, as it consists
of one rule for every possible kind of transition.

The aspects of ML3 that make it domain-specific to the area of demography
also play a major role in making the model description more succinct while
enabling an easier implementation. For this model, two of them were of particular
importance: the possible time dependent transition rates and parameter maps.
Many of the transition rates in demographic models depend on the age of the
agent. For example, mortality is strongly age-dependent, as are fertility and
marriage. ML3 allows such time-dependency in transition rates and makes the
aging of agents directly part of the language, at a cost to the efficiency of the
execution due to the additional complexity in scheduling events. Languages not
specific to this domain might not make this tradeoff. Parameter maps are a
way to deal with time series data, which is also used excessively in this and
other demographic models. The example shows the power of domain-specific
modeling languages for assessing the structural validity of models and their role
in modeling for explanation [14].

1 Person
2 | ego.inMigrationProcess(), ego.migrationIntention() >= 0, ego.migrationStage

!= "preparation"
3 @ ego.migrationAdvancementRate()
4 -> ego.advanceMigrationStage();
5
6 | ego.inMigrationProcess(), ego.migrationIntention() >= 0, ego.migrationStage =

"preparation", ego.canAffordMigration()
7 @ ego.migrationAdvancementRate() * ego.borderEnforcementFactor()
8 -> ego.migrate();
9

10 Person.migrationAdvancementRate() := ?rho * e^(?a7 * ego.migrationIntention())
11 where ?rho := advancementRateBaseline,
12 ?a7 := advancementRateIntentionWeight;
13
14 Person.migrationIntention() := ?a4 * ?MA + ?a5 * ?SN + ?a6 * ?PBC
15 where ?a4 := attitudeWeight,
16 ?a5 := socialNormsWeight,
17 ?a6 := perceivedBehavioralControlWeight,
18 ?MA := ego.migrationAttitude(),
19 ?SN := ego.socialNorms(),
20 ?PBC := ego.perceivedBehavioralControl();

Fig. 4: Two of the ML3 rules concerned with the migration decision process. Each
rule corresponds with one arrow, or kind of equivalent arrows, in Figure 1. The
first rule corresponds the three arrows labeled with "waiting time expired". The
second rule describes a successful migration attempt. Below that the definition of
the rate with which agents progress through the stages of the decision process,
and for calculation the migration intention based in the Theory of Planned
Behavior are shown.
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4 Explicitly specified experiments

To gain confidence in the validity of a multi-level demographic model it is neces-
sary to probe and explore its behavior thoroughly. Therefore, diverse simulation
experiments are required [30,34]. The results of simulation experiments, however,
depend not only on the model, but also on the context in which they are exe-
cuted. This insight has led to formalizations of this context, most prominently
Zeigler’s experimental frame [55]. Zeigler proposes to embed the model in an
experimental frame, explicitly described as DEVS models, that generates the
model inputs and analyzes the model outputs.

By enabling model users to access and repeat the simulation experiments
conducted to validate a model, their confidence in the model’s validity is in-
creased. However, the two most frequently used ways to provide information
about simulation experiments do not facilitate assessing the experiments done.
First, executed experiments can be described informally, e.g. textually, or semi-
formally as proposed in [20,21]. Repeating the experiments is typically hindered
by unambiguous or missing information or unavailable software or data. A better
approach is to provide software artifacts to execute the experiments. However,
such executable software is typically hard or even impossible to inspect, leaving
unclear what experiment is getting executed by it. Additionally, technical is-
sues, such as dependencies on third-party software, makes running experiments
difficult (or even impossible, for example if the dependencies are not available
anymore some time after the experiments have been published). To address the
challenges of accessing, repeating, and thus assessing simulation experiments,
explicitly specified simulation experiments that allow the replication of experi-
ments are needed.

SED-ML [52] has been developed in the SBML ecosystem in systems biology,
originally to replicate published outputs of simulation experiments. Based on
XML and cultivated by a standardization committee, SED-ML can be processed
by many tools. These tools can interpret specifications with the standardized
syntax and semantics, which enables tool-independent reproducible experiments.
This makes SED-ML an effective exchange format for experiments. However,
due to being a standard, new features can not easily be introduced in SED-
ML. For example, parameter sweeps were not supported in the first release, but
introduced in Level 1 Version 2 [5].

The Simulation Experiment Specification on a Scala Layer (SESSL) [18] aims
to mitigate this lack of flexibility. SESSL is an internal domain-specific language,
which enables on-the-fly addition of features through its host language Scala,
for example to process simulation output data for further analysis [40]. The re-
sulting experiment specifications are valid Scala code with a declarative feel.
Thus, SESSL experiments are readable as well as executable. Further, by using
Maven (https://maven.apache.org) for artifact persistence and manage-
ment, SESSL experiments can be reproduced across machines. This way, model
users can access and repeat validation experiments more easily.

Before a model can be validated, values for its input parameters must be
found—the model is calibrated. As multi-level models typically contain parame-

https://maven.apache.org
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ters for speculative micro-level hypotheses, for which usually no validation data
is available, this is a significant step towards a valid model. The migration model,
for example, has eight weighting parameters that control the decision process of
individuals. To find valid parameterizations of the model, methods to optimize
a certain quality criterion can be employed, for example to minimize the dif-
ference between the model output and a given observation. Choosing a metric
to calculate the difference is not a trivial task and depends heavily on the data
to compare. Similarly, diverse optimization algorithms are available. Typically,
these have to be parameterized as well. To make such a calibration experiment
accessible and replicable, this information has to be included. Figures 5 and 6
shows how this can be realized with SESSL and its bindings for ML3 and Opt4j
[36].

1 class MigrationExperiment extends Experiment with ParallelExecution with
ParameterMaps {

2 model = "migration.ml3"
3 simulator = NextReactionMethod()
4 parallelThreads = -1
5 replications = 1
6 initializeWith(new JsonStateBuilder("initialstate.json"))
7 startTime = 1982
8 stopTime = 2050
9

10 fromFile("maleMortality.csv")()
11 fromFile("femaleMortality.csv")()
12 fromFile("fertility.csv")()
13 fromFile("income.csv")()
14 fromFile("ageDifferenceModifier.csv")()
15 fromFile("baseMarriageRate.csv")()
16 fromFile("borderEnforcement.csv")()
17 fromFile("disc.csv")()
18
19 set("minFertilityAge" <~ 12, "maxFertilityAge" <~ 49)
20 set("ageOfAdulthood" <~ 16, "ageOfRetirement" <~ 65)
21 set("minMarriageAge" <~ 9, "maxMarriageAge" <~ 60)
22 set("meanMigrationStartAge" <~ 17)
23 set("spouseAgeModifier" <~ -0.01301431)
24 set("intercept" <~ -0.490129556)
25 set("homeCountryGini" <~ 0.4, "hostCountryGini" <~ 0.3)
26 }

Fig. 5: An experiment with the migration model defined in SESSL 0.14. Line 1
declares a Scala class that represents a ML3 simulation experiment that uses
parallel execution and parameterization of models with parameter maps (e.g.,
age-indexed). Lines 2–8 specify the model file, the simulation algorithm, the
number of parallel threads to use, the number of replications to execute, the
method to build the initial state as well as the start and stop time of the sim-
ulation. In lines 10–17, files from which to read in parameters that are stored
in CSV files with parameter maps are stated. Lines 19–25 specify some further,
scalar model parameters.
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1 val referenceMean = 2
2
3 minimize { (params, objective) =>
4 execute {
5 new MigrationExperiment with Observation {
6 set("incomeEvaluationConstant" <~ params("a1"))
7 set("incomeEvaluationCapitalWeight" <~ params("a2"))
8 set("familyEvaluationWeight" <~ params("a3"))
9 set("attitudeWeight" <~ params("a4"))

10 set("socialNormsWeight" <~ params("a5"))
11 set("perceivedBehavioralControlWeight" <~ params("a6"))
12 set("advancementRateIntentionWeight" <~ params("a7"))
13 set("advancementRateBaseline" <~ params("rho"))
14
15 observeAt(Change(agentType = "Person", field = "migrationStage",
16 filter = "ego.migrationStage = ’migrated’ && ego.planningTime != 0")) {
17 observe("decisionDuration" ~ expression("ego.planningTime"))
18 }
19
20 var ages = List.empty[Double]
21
22 withRunResult { result =>
23 if (result ? "decisionDuration")
24 ages ++= result.values("decisionDuration").asInstanceOf[Iterable[

Double]]
25 }
26
27 withReplicationsResult { result =>
28 val mean = if (ages.nonEmpty) math.abs(referenceMean - (ages.sum / ages

.size))
29 else Double.PositiveInfinity
30 objective <~ mean
31 }
32 }
33 }
34 } using new Opt4JSetup {
35 param("a1", 100.0, 5, 300)
36 param("a2", 0.0, 0.1, 2)
37 param("a3", 0.0, 5, 200)
38 param("a4", 0.0, 0.1, 2)
39 param("a5", 0.0, 0.1, 2)
40 param("a6", 0.0, 0.1, 2)
41 param("a7", 0.0, 1E-5, 1E-4)
42 param("rho", 0.0, 0.01, 1)
43 optimizer = ParticleSwarmOptimization(particles = 10, iterations = 20)
44
45 withOptimizationResults { results =>
46 println("Overall results: " + results.head)
47 }
48 }

Fig. 6: A calibration experiment defined in SESSL 0.14, using the migration ex-
periment class from Figure 5. The experiment uses a particle swarm optimization
algorithm (line 43) from the Opt4j package [36] that tunes the parameters spec-
ified with ranges in lines 35–42. The parameter ranges can be chosen based on
model assumptions, but here we set them based on the known optimum [28].
Lines 6–13 then read the parameters set by the optimizer and apply them to the
model when running simulations. The observation of the model is configured in
lines 15–18: the time between starting to plan a migration and actually migrat-
ing is recorded for every agent that actively migrates, i.e., is not brought with
another migrating agent. The calculation of the target function to minimize is
realized in lines 20–31. Specifically, line 20 declares a variable in which the plan-
ning times observed in single runs are stored (line 24). Lines 28–30 aggregate the
durations to the mean and compute the difference to a reference mean (specified
in line 1).
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Once calibrated, behavioral characteristics of the model can be checked by
simulating the model and making sure that the observations from the simula-
tion match some defined expectations, for example derived from data. A formal
framework for this approach is statistical model checking (SMC) or simulation-
based verification. SMC answers the question whether a random simulation run
of a model satisfies a given property with at least a given probability [33]. Ap-
plying SMC to a model implies executing simulation runs, checking the property
on each of the runs, and using hypothesis testing to infer statistically valid state-
ments about the model’s behavior. Thus, the properties to investigate must be
defined on model outputs that are observable in a simulation run. Typically, tem-
poral logics are used to express statements about the development of the model
outputs in time. SMC experiments can be specified reproducibly by including
the property to check as well as the statistical parameters in the experiment
set-up.

Apart from calibration and statistical model checking, many more types of
experiments are required to validate a model. To make such experiments acces-
sible, replicable and, thus, assessible, experiment specification languages need
to support a wide variety of experiments, the set of which might be constantly
growing. Particularly the later poses a challenge for the design and development
of these languages, as they must satisfy constantly changing requirements while
supporting a succinct and understandable description of experiments.

5 Provenance models for dependencies made explicit

Whereas the above domain-specific languages allow the user to succinctly spec-
ify and execute a model as well as a simulation experiment, what [42] requested
in his Preferred Model Reporting Requirements (PMRR) to include in addition,
i.e., information on the sources of data for the model’s equations and algorithmic
rules, has not been considered yet. However, given that not only data as input
and data for calibration, but also theories, such as the Theory of Planned Behav-
ior [1], and existing models such as the Heligman-Pollard mortality model [24],
and, ideally, cognitive controlled experiments to probe the micro level decision
mechanisms, contribute to a multi-level model in demography, only focusing on
data will not suffice. Therefore, a more systematic inspection of a simulation
model’s provenance is asked for [44].

“Provenance is information about entities, activities, and people involved
in producing a piece of data or thing, which can be used to form assessments
about its quality, reliability or trustworthiness”[22]. The Open Provenance Model
(OPM) [38] allows to describe this provenance information as a directed graph,
where nodes represent artifacts, processes, or agents, while edges indicate depen-
dencies. Here, artifacts are digital representations of entities within a computer
system, in our case component models, data sources or experiment specifications.
Processes represent activities performed with artifacts to generate new artifacts.
And agents are the entities enabling and controlling the processes. Between these
elements five dependencys are distinguished: 1. an artifact was used in a process,
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2. an artifact was generated by a process, 3. a process was controlled by an agent,
4. a process was triggered by another process, and 5. an artifact was derived from
another artifact.

To demonstrate our approach presented in [44], we tried to reconstruct the
provenance information about the migration decision process model from the
publication about the model [28], the ODD description [26], and the information
provided together with the model in the OpenABM model repository [27]. We
focus on the information about artifacts and processes, and leave out information
about agents, as we have little information about who exactly was involved each
process. The result, which is by no means complete, due to the limited amount
of information we have, is shown in Figure 7. The migration decision process
model itself (mig. model) is shown as an artifact on left side of the figure. It was
produced through composing its models components (process comp. model). We
will now look at one of the components, the mortality model, in detail. The
mortaliy model (artifact fitted HP) it is directly derived from the established
Heligman-Pollard model of mortality (artifact HP), as the fitted model is just a
variant of the unfitted model, with concrete values set for its parameters. It was
produced through the process of fitting the model (process fit HP) to the UN
World Population Prospects 2015 data on mortality in Senegal (artifact WPP).

In the provenance model the dependencies between the processes and arti-
fact, and their interdependencies, become explicit. This explicitness can be used
to improve our trust into the model. We have now made it explicit, that the
mortality component of the model is derived from the Heligman-Pollard model.
That model is widely applied and its validity for different applications has been
assessed [10]. At the same time, the provenance model tell us, which data was
used to fit the Heligman-Pollard model to the Senegal case. But the provenance
model does not only consider the artifacts, but also the processes through which
they were derived. It makes the process of fitting explicit, pointing the modeler to
the need to document it, and making a later reader aware of it. All together, this
information gives us trust in the mortality component of the migration model. In
general, the provenance information enables us to reconstruct assumptions made
in the components, the theories they were derived from, methods used for de-
veloping them, and data sources used for fitting the components and trace them
to their origin. Further we can use provenance data to reason about the origins
used and processes executed for the development the component models. For
example if we identify an methodological error in the collection of a dataset we
can use the provenance model to infer affected model components which need to
be revised. For this, inference mechanisms such as OPQL [35] can be employed.

Similar to the provenance of the simulation model, we can document the
provenance of simulation experiments. We have done so for the calibration ex-
periment executed by Klabunde et al., and show the result in Figure 8. In the
figure, the migration process model artifact (mig. model) is shown once again.
The description of the calibration experiment is shown as another artifact (calibr.
exp). The process of executing the calibration experiment (run calibr.) uses those
two artifacts, as well as the target value of the calibration (artifact plan. time)
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Fig. 7: Open Provenance Model for the migration decision process model, as
we have derived it from the publications about the model. The artifacts and
processes in this figure are shortly described in Tables 1, 2, 3, and 4.

and the initial artificial population (init. pop). The latter two are derived from
different sources of data through various processes. The result of the calibration
process is a calibrated model (artifact calibr. model). It is directly derived from
the original migration model, as it only differs from it in the parameter values
set.

Provenance information about the simulation experiment can be used, similar
to provenance of the model, to trace the origin of data and methods used in the
experiment. The origin of the data is especially of interest for validation and
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Fig. 8: Open Provenance Model for the calibration experiment. Note that the
artifacts mig. model and MAFE are identical to the artifacts of the same name
in Figure 7. The artifacts and processes in this figure are shortly described in
Tables 1, 2, 3, and 4.

calibration experiments, because if the same data used for the calibration of
the simulation is also used for validation of the simulation model the validation
result would be invalid. Further, we can use the provenance information to find
all artifacts used for the execution of an experiment. This information can be
used to bundle these artifacts into a container which contains all the data sources,
the simulation model and the simulation experiment specification. The container
can be then shared and therefore allow to replicate the experiment result.

The reconstruction of the provenance data by tracing publications using the
model documentation is cumbersome and therefore (semi-)automatic methods
for retrieving provenance data are needed. For this, three different techniques
were proposed by Moreau et al. [38], where each method allows to retrieve dif-
ferent parts of the provenance information.

Firstly, we can use ontologies to annotate parts of the simulation model and
experiments which allows to specify all information related to the process of cre-
ating the simulation model or executing the simulation experiment. An ontology
allows describing entities, relations between entities and attributes of entities in
a domain-specific vocabulary. For example, we can annotate the migration model
(mig. model) with information about the model components used e.g., the fitted
Heligman-Pollard model (fit. HP). By annotating the fitted Heligman-Pollard
model we can describe information about the fitting process like the used data
source. To derive the provenance information from these annotations, the annota-
tions need to be parsed and analyzed. This approach demands a close annotation
of all artifacts to derive the full provenance model. However, it is up to the user
to annotate the simulation model and experiments as part of the documentation
and therefore can only be seen as a semi-automatic approach. Please note, the
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Open Provenance Model itself can be described using an ontology, which allows
to provide additional information about the artifacts and dependencies using
further ontologies [38].

When scrips, scientific workflow, or domain specific languages are employed
to execute automatic tasks, those can also be used as source of provenance infor-
mation, by integrating the derivation of provenance information into them. All
these approaches allow to describe data-driven processes, but differ in the way
the process is described and which features are provided by the execution envi-
ronment. In scripting environments, like Python or R, the script is executed by
the environment and it is up to the user to implement management procedures
for the data by himself. Scientific workflows are often described by a graph con-
taining nodes representing data-processing activities whereas the edges represent
the flow of the data. These environments are especially designed for data-driven
processes and therefore provides a rich feature sets of common used methods
for data processing. Finally, domain specific languages can be used to describe a
simulation experiments, as we have demonstrated in Section 4. These languages
are designed to describe a simulation experiment which can be executed in an
appropriate environment which uses data management methods without explicit
description required by the user. However, as these approaches focus the execu-
tion of processes only provenance data related to the processes can be collected.
As a result, the description of the process itself becomes an artifact and the
execution of the process becomes a process in the provenance model. In case of
scripts and domain specific languages two different methods seems suitable to
retrieve the related artifacts. Firstly, the execution of the script or created sim-
ulation experiment can be observed to determine all read and created files [39],
which become individual artifacts in the provenance model. And secondly, the
script itself can call methods to store provenance information [9]. Scientific work-
flow environments often provide features to retrieve the provenance information
directly after the execution of the workflow [45].

Finally, a version control system can be used to derive provenance information
by tracking changes to document. For example if the migration model artifact is
stored in an document we can track how the model changes over time. However,
the version control system can only capture the changes to artifacts, but not
the processes that produce the changes. Therefore we only get the was derived
from dependency from the version control system. For example if the simulation
model was changed during the calibration process this change can be recognized
and allows us to retrieve the was derived from dependency, but we can not get
further information like the target values about the calibration process. This can
supported using tools like Git2PROV [16], which retrieves a provenance model
from the commit history of a git repository.

6 Conclusion

The validation of multi-level models in demography provides many challenges, as
we speculate at micro level and calibrate at macro level. Ideally, the validity of a
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Id. Description Ref.

calibr. model calibrated migration decision process model [28]
cons. consumption time series for Senegal and France [27]
cost migration cost model [27]
fitted Had. fitted Hadwiger model [27]
fitted HP fitted Heligman-Pollard model [27]
inc. lognormal income distributions for Senegal and France at mul-

tiple times
[27]

marr. marriage model component [27]
mig. model migration decision process model [28]
TPB Theory of Planned Behavior as model of a decision process [1]
Table 1: Open Provenance Model artifacts corresponding to the migration deci-
sion process model and its components.

Id. Description Ref.

D’11 Davies et al. about the level and distribution of global household
wealth

[15]

DHS Senegal Demographic and Health Survey 1986 - 2014
empl. IMF employment data
GDP IMF GDP data
jetcost flight cost data retrieved from jetcost.de (specifics unknown)
K’07 estimations of the cost of migration by boat from Senegal to

the Canary Islands by Kohnert
[31]

MAFE Migration from Afrika to Europe [4]
PWT Penn World Table 6.1
SB’10 estimation of the cost for smugglers for illegal migration by

plane and ship by Schmid and Borchers
[46]

SC Senegal Census 1988
UNPD UN Population Division data about the age structure of Sene-

galese in France in 1982
VM’06 estimations of the cost of the migration by boat from Senegal

to various points in Europe by van Moppes
[51]

WDI World Development Indicators
WPP UN World Population Prospects 2015

Table 2: Open Provenance Model artifacts represent sources of data.
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Id. Description Ref.

calibr. exp calibration experiment [28]
CM Coale-McNeil model of transition rates to marriage [12]
comp. partner compatibility measure to use by the marriage market [26]
gini Gini index estimation for Senegal and France [27]
Had. Hadwiger model of fertility rates [23]
HP Heligman-Pollard model of age-dependent force of mortality [24]
init pop. initial population for the simulation [27]
LN inc. lognormal distribution as model for income distributions [3,11]
mean inc. mean income time series for Senegal and France [27]
MM marriage market for matchmaking [56]
plan. time mean time from starting to plan migration to the actual migra-

tion
[27]

wealth estimated distribution of household wealth in Senegal [27]
Table 3: Open Provenance Model artifacts that are neither sources of data, nor
corresponding to the migration decision process model and its components.

Id. Description Ref.

comb. inc. combination of the estimated income measures to derive esti-
mated income distributions for Senegal and France

[27]

comp. marr. composition of the different components of the marriage model [27,28]
comp. model composition of the different components of the migration deci-

sion model
[28]

derive comp. derivation of a compatibility measure from the MAFE data [26]
est cons. estimation of a consumption time series [27]
est. cost estimation of the mean migration cost as a weighted average of

the migration cost when using different modes of transit
[27]

est. gini estimation of Gini indices in Senegal and France [27]
est. mean. estimation of a mean income time series in Senegal and France [27]
est. time estimation of the mean time from starting to plan migration to

actually migrating
[27]

est. wealth estimation of the wealth distribution for Senegalese households [27]
fit CM fitting of the Coale-McNeil model to the Senegal data [27,28]
fit Had. fitting of the Hadwiger model to the Senegal data [27]
fit HP fitting of the Heligman-Pollard model to the Senegal data [27]
run calibr. execution of the calibration experiment [28]
sample pop. sampling of the initial population for the simulation [27]

Table 4: Open Provenance Model processes.
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micro model, e.g., the diverse decisions that are involved in determining whether
or not to migrate, is supported by controlled cognitive experiments. However,
even in the absence of such experiments, evidence for the validity of a multi-level
model can be found in a multitude of artifacts. Based on a migration model, we
illustrate how making these artifacts and their relations more easily accessible
contributes to increasing the trust in the model. The key ingredients in this en-
deavor are declarative representations that can be executed or reasoned about.
Domain specific modeling language provide an executable, yet succinct model
representation that reflects the structure of the conceptual model, facilitating
a better understanding of a model’s mechanisms. Domain-specific languages for
specifying experiments support not only the documentation, but also the repli-
cation of simulation experiments, and thus give insight into a model’s behav-
ioral repertoire. Crucial at this point are the flexibility and extensibility of the
languages to account for the increasing number of simulation methods that, for
example, a demographic multi-level model should be subjected to. Methods such
as statistical model checking allow simulation experiments to explicitly specify
expectations for the behavior of the model, which is a step towards reducing the
need for human interaction. Finally, exploiting the provenance model allows to
relate the diverse artifacts that contributed to a simulation model and the pro-
cess of simulation experimentation. While this is already encouraged by widely
used protocols such as ODD, the formalization in a provenance model allows to
partly automate the process and reason about the relations of artifacts using
inference mechanisms. This way, experiment specification, theories that underlie
the model, as well as data used as input or for calibration can be linked even
beyond individual simulation studies. All together reveal not the whole, but a
quite fascinating tale about the science and art of model developing.
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