
Pr
epr

int

Multi-Level Modeling and Simulation of Cellular
Systems - An Introduction to ML-Rules?

Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher

University of Rostock, Institute of Computer Science,
Albert-Einstein-Straße 22, 18059 Rostock, Germany

{tobias.helms,tom.warnke,adelinde.uhrmacher}@uni-rostock.de
http://mosi.informatik.uni-rostock.de

Abstract. ML-Rules is a rule-based language for multi-level modeling
and simulation. ML-Rules supports dynamic nesting of entities and ap-
plying arbitrary functions on entity attributes and content, as well as
for defining kinetics of reactions. This allows describing and simulating
complex cellular dynamics operating at different organizational levels,
e.g., to combine intra-, inter- and cellular dynamics, like the proliferation
of cells, or to include compartmental dynamics like merging and splitting
of mitochondria or endocytosis. The expressiveness of the language is
bought with additional efforts in executing ML-Rules models. There-
fore, various simulators have been developed from which the user and
automatic procedures can select. The experiment specification language
SESSL facilitates design, execution, and reuse of simulation experiments.
The chapter illuminates the specific features of ML-Rules as a rule-based
modeling language, the implications for an efficient execution, and shows
ML-Rules at work.

Keywords: computational biology, rule-based modeling, multi-level mod-
eling, cell biological systems, stochastic simulation, experiment specifica-
tion

1 Introduction

One of the first tasks in executing a simulation study is determining the content
of the simulation model to be developed (or selected), which typically includes
requirements, model input, output, assumptions, or simplifications [33]. Therefore,
it is necessary to understand the real system that is the subject of the simulation
study as well as the methodological implications of the scientific questions to be
answered by the in-silico experiments. However, to select suitable methods for the
in-silico experiments, knowledge about methods, their respective constraints and
features is required. Within this chapter, we will present some specific features

? This manuscript, a preprint version, was prepared for an upcoming volume in
Springer’s Methods in Molecular Biology series, entitled “Modeling Biomolecular
Site Dynamics: Methods and Protocols” (W.S. Hlavacek, Editor)



Pr
epr

int

2 Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher

that the modeling language ML-Rules [26, 27, 36] adds to the family of rule-based
languages in cell biology.

The motivation to develop ML-Rules has been to support multi-level modeling,
i.e., describing a system at different organizational levels and relating the dynamics
of the different levels. Considering multiple levels appears essential for a better
understanding of biological systems. This refers to ecological systems, where
“explanation of observed behaviour is not possible with reference solely to the
spatial-temporal scale at which the observation was made” [37], as well as to
cell-biological systems that “tend to regulate themselves by feedback effects, that
is, by a process in which higher-level (systems) parameters influence lower-level
components” [29]. Many cell biological models, for example, focus on intra-cellular
dynamics. However, those influence and are influenced by dynamics at cell level,
e.g., the proliferation and differentiation of stem cells, and cell-cell interaction.

For capturing the hierarchical organization and the causalities between differ-
ent levels, i.e., from the lower to the upper (upward causation) and vice versa
(downward causation) [3], ML-Rules supports a hierarchical dynamic nesting of
model entities and upward and downward causation between different levels. De-
scribing each level with its properties and dynamics explicitly and relating those
different levels requires a high flexibility of the language: arbitrary attributes
can be assigned to model entities, and arbitrary functions help to assess and
accessing these attributes, constraining the kinetics, as well as relating dynamics
at different levels. Thus, ML-Rules supports multi-level modeling by augmenting
the well-established rule schemata with explicit dynamic hierarchical nesting of
model entities, assigning attributes and content to model entities at each level.
Rules are defined and applied on nested model entities as well as model entities
that are nested within others.

Thus, already on first view certain differences to other rule-based modeling
approaches exist, e.g., in comparison to BioNetGen [2] and Kappa [8] which focus
on molecular binding of species to complexes. These differences, along with the
features of ML-Rules, will be detailed in the following sections.

In section 2, the most important features of ML-Rules are illustrated with
simple example models. The models are intentionally kept as simple as possible,
focusing on the presented features. We included the models without any claim
of them being biologically meaningful; for realistic applications of ML-Rules we
refer to other sources, e.g., [15]. In Section 3, we discuss computational challenges
caused by the expressive features of ML-Rules and clarify how these features
influence the runtime performance of the simulator. Finally, in Section 4, we
demonstrate how the simulation experiment specification language SESSL can be
used to perform simulation experiments with ML-Rules models, e.g., parameter
fitting by optimization.

The implementation of ML-Rules is open source and available in our source
code repository at https://git.informatik.uni-rostock.de/mosi/mlrules2.
Besides, a sandbox editor is available to create and execute models.



Pr
epr

int

ML-Rules 3

1 // constants
2 k1: 1e-3; k2: 2; k3: 1; k4: 10; k5: 0.1;
3 n: 1000;
4

5 // species definitions
6 E(); // enzyme
7 S(); // substrat
8 ES(); // enzyme-substrat complex
9 P(); // product

10 EP(); // enzyme-product complex
11

12 // initial solution
13 >>INIT[n E + n S];
14

15 // rules
16 E:e + S:s -> ES @ k1 * #e * #s;
17 ES:es -> E + S @ k2 * #es;
18

19 ES:es -> EP @ k3 * #es;
20

21 EP:ep -> E + P @ k4 * #ep;
22 E:e + P:p -> EP @ k5 * #e * #p;

Fig. 1. A simple enzyme-substrat-product model written in ML-Rules.

2 Modeling in ML-Rules

Starting with a simple example model to present the basic syntax of ML-Rules
(see Section 2.1), this section step-by-step introduces the most important features
of ML-Rules, i.e., attributed species and rule variables (see Section 2.2), dynamic
compartments and multi-level rules (see Section 2.3), and functions on solutions
(see Section 2.4). Simple models are given to illustrate the individual features.
All listings show complete and valid ML-Rules models that can directly be used
to execute simulations.

2.1 An Introductory Example

Figure 1 shows a complete ML-Rules implementation of a simple model rep-
resenting an enzyme-substrate-product network. In this network, enzymes (E)
and substrates (S) can form fragile enzyme-substrate complexes (ES). Such an
enzyme-substrate complex can transform the substrate to a product (P) and form
a fragile enzyme-product complex (EP). Enzymes and products can again form
enzyme-product complexes.

The ML-Rules implementation of this model begins with definitions of con-
stants (ll. 2-3). Constants can be used for example to calculate reaction rates or
to set the initial amount of species. A name of a constant must always start with



Pr
epr

int

4 Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher

0 2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00

Simulation Time

S
pe

ci
es

 A
m

ou
nt

E S ES P EP

Fig. 2. Simulation results of the enzyme-substrate-product model with the stochastic
simulator based on 20 replications.

a lower letter. Next, species are defined (ll. 6-10). Species names must always
start with a capital letter. Attributes can be defined within parentheses after
the species name (see Section 2.2). Since this model does not use attributes,
the parentheses are empty. In line 13, the initial entity multiset called initial
solution (in the following, a multiset of entities is called solution) is defined,
which contains 1000 entities of the species E and 1000 entities of the species S (n
= 1000). The + operator is used to connect entities to a solution. Finally, the
rules of the model are defined (ll. 16-22). Rules consist of three parts: reactants,
products and a kinetic rate:

reactants -> products @ rate

For example, the first rule (l. 16) describes the process that an enzyme (E) and a
substrate (S) form a complex (ES). Like in most rule-based languages, a rule is a
pattern for a set of chemical reactions, i.e., based on the state of the system, a
rule can result in various chemical reactions [2]. In this model, however, every
rule exactly results in one reaction resulting in a reaction network with five
reactions. All rules apply the law of mass action, i.e., the rate of a rule depends
on a constant multiplied with the amounts of the reactants. The amount of a
reactant can be accessed via reactant variables and the # operator. Reactant
variables have to be defined after a reactant separated by a colon. For example,
e and s are reactant variables of the first rule in line 16 and therefore #e and #s
return the amount of the enzymes and substrates.

The standard simulator for executing ML-Rules models is based on the
stochastic simulation algorithm (Direct Method) [14], where each reaction is
calculated individually. A stochastic simulation is beneficial if stochastic effects
influence the model behavior, e.g., in case species with small amounts are con-
sidered, which is easily the case if compartments and cells make up part of the
species and dynamics to be considered. Figure 2 shows simulation results of the



Pr
epr

int

ML-Rules 5

model calculated with the stochastic simulator. Due to stochastic effects one
simulation run does not suffice, but multiple replications are required to assess
the possible behavior. More details about simulation algorithms and a discussion
about possible improvements are given in Section 3.

2.2 Attributed Species and Reactant Variables

Attributed species are an essential concept of rule-based modeling languages [2, 8,
30, 21]. Attributes allow introducing variables in reactant patterns and therefore
enable succinct model implementations. ML-Rules supports attributed species
with attributes of the following types:

1. bool: true or false
2. num: real numbers
3. string: character sequences
4. link: free or unique binding values

Figure 3 shows a model of an abstract cell cycle using an attributed species. In
line 5, one species Cell is defined with three attributes: a numerical attribute for
the volume, a string attribute for the state of the cell (G1, SG2, M), and a boolean
attribute representing the growth activity of the cell (enabled (true) or disabled
(false)). In the definition of a species, the number of attributes of every entity
of this species is fixed, i.e., every entity of the species Cell has always exactly
these three attributes. Attributes do not have explicit names in ML-Rules, but
are always determined by their position in the attribute tuple of a species. This
design choice works well if species do not have too many attributes1. The initial
solution (l. 8) consists of ten cells with the volume 1.0, the state ’G1’, and the
growth activity enabled (true).

The first rule (ll. 11-12) describes the growth of a cell. The reactant pattern
Cell(vol,state,true) uses two attribute variables vol and state. It matches
all entities with an arbitrary volume and state, but the growth activity must be
enabled. For example, given the initial solution, the simulator finds one match
for the reactant pattern and creates one reaction with vol = 1.0 and state =
’G1’. The attribute variables are reused in the product to describe a cell with
the same state and an increased volume. Arithmetical expressions and functions
can directly be used to calculate attribute values of products. Here, the function
unif(0,1), which returns a sample from the uniform distribution U(0, 1), is used
to increase the current volume of the reactant cell. A comprehensive list of all
auxiliary functions is given in the ML-Rules manual.

The second rule (ll. 13-14) describes the change of a cell from the state ’G1’
to ’SG2’. Here, the rate of the rule is influenced by the volume of a matched
Cell, it must be greater than 2.0. Analog, the third rule (ll. 15-16) describes
the change of a cell from ’SG2’ to ’M’. A cell division is described in the fourth
rule (ll. 17-18). The daughter cells start again in the state ’G1’ with the same
1 Other rule-based languages, e.g., ML-Space [1], opted for accessing attributes by
names.



Pr
epr

int

6 Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher

1 // constants
2 k1: 0.1; k2: 0.5; k3: 0.4; k4: 0.3; k5: 0.2;
3

4 // species definitions
5 Cell(num,string,bool);
6

7 // initial solution
8 >>INIT[10 Cell(1.0,’G1’,true)];
9

10 // rules
11 Cell(vol,state,true):c -> Cell(vol+unif(0,1),state,true)
12 @ k1 * #c;
13 Cell(vol,’G1’,active):c -> Cell(vol,’SG2’,active)
14 @ if (vol > 2.0) then k2 * #c else 0;
15 Cell(vol,’SG2’,active):c -> Cell(vol,’M’,active)
16 @ k3 * #c;
17 Cell(vol,’M’,active):c -> 2 Cell(vol/2,’G1’,active)
18 @ k4 * #c;
19 Cell(vol,state,active):c -> Cell(vol,state,!active)
20 @ k5 * #c;

Fig. 3. An excerpt of the a simple cell cycle model written in ML-Rules.

growth activity as the parent cell and with its halved volume. Finally, the last
rule (ll. 19-20) describes a change of the growth activity. For boolean variables,
analogous to many programming languages, “!” denotes the negation.

Altogether, this model describes an infinite reaction network, because the set
of possible assignments for the volume attribute is infinite. Therefore, for this
model the complete reaction network cannot be calculated once at the beginning
of a simulation run. Only a part of the network based on the current state can
be computed, which must be updated frequently resulting in computational
overhead, see Section 3.

The attribute type link can be used to model species complexes without
enumerating all possible complexes explicitly. The simple model described in
Section 2.1 uses explicit species to represent enzyme-substrate complexes (ES)
and enzyme-product complexes (EP). However, listing all possible combinations of
complexes becomes impracticable if the number of possible complexes increases,
e.g., in case a model contains species with various binding sites. Coping effectively
with these multi-state biomolecules has been one of the driving forces behind
rule-based modeling approaches [11]. Accordingly, explicit species definitions for
such complexes can be avoided in ML-Rules by using attributes of species and
the attribute type link. Figure 4 shows the adaptation of the enzyme-substrate-
product model using link attributes. All species have one attribute of type link
representing one binding site (ll. 6-8). Each attribute of the type link has either
the value free to represent the unbound state or a key representing the binding



Pr
epr

int

ML-Rules 7

1 // constants
2 k1: 1e-3; k2: 2; k3: 1; k4: 10; k5: 0.1;
3 n: 1000;
4

5 // species definitions
6 E(link); // enzyme with one binding site
7 S(link); // substrat with one binding site
8 P(link); // product with one binding site
9

10 // initial solution
11 >>INIT[n E(free) + n S(free)];
12

13 // rules
14 E(free):e + S(free):s -> E(x) + S(x)
15 @ k1 * #e * #s where x = nu();
16 E(x) + S(x) -> E(free) + S(free)
17 @ if (x != free) then k2 else 0;
18

19 E(x) + S(x) -> E(x) + P(x)
20 @ if (x != free) then k3 else 0;
21

22 E(x) + P(x) -> E(free) + P(free)
23 @ if (x != free) then k4 else 0;
24 E(free):e + P(free):p -> E(x) + P(x)
25 @ k5 * #e * #p where x = nu();

Fig. 4. The simple enzyme-substrat-product model (see Section 2.1) using links to
describe the complexes.

between entities containing the same key. For example, the first rule (ll. 14-15)
takes one unbound enzyme (E(free)) and one unbound substrate (S(free))
and connects them by assigning the same link value to their first attribute. A
new unique link value is generated by the method nu(). Since the same link
value shall be used twice to assign it to both product entities, the variable x is
defined at the end of the rule in a where clause. The where clause can be used
to create variables for rules and is inspired by the where clause of the Haskell
programming language [22]. The rules dealing with bound entities (ll. 16–23) use
the same reactant variable x for two reactants, which means that the variable
must have the same value for both reactants. Consequently, exactly one pair of
one enzyme and one substrate can match both reactants for example of the rule
unbinding them (ll. 16-17). Since each link value is unique, all bound enzymes,
substrates and products are treated as individuals. Thus, their amounts do not
have to be considered in the rate equations. Realizing binding by new values
is adapted from process algebras, where new names are generated to allow a
private communication between individual processes over a private channel [32].
Whereas the forming of complexes by entities that share “private” attribute values



Pr
epr

int

8 Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher

1 // constants
2 k1: 0.02;
3 k2: 0.15;
4 nBCatCell: 10000;
5 nBCatNuc: 4000;
6

7 // species definitions
8 Cell()[]; // compartment
9 Nucleus()[]; // compartment

10 BCat();
11

12 // initial solution
13 >>INIT[3 Cell[1 Nucleus[nBCatNuc BCat] + nBCatCell BCat]];
14

15 // rules
16 Nucleus[s?] + BCat:b -> Nucleus[BCat + s?] @ k1 * #b;
17 Nucleus[BCat:b + s?] -> Nucleus[s?] + BCat @ k2 * #b;

Fig. 5. A model of β-catenin proteins (BCat) shuttling into and out of the nucleus of a
cell.

avoids introducing a further construct to the modeling language, bound entities in
ML-Rules constitute individuals due to the unique values of the attributes. This
implies that for each bound species pair, the simulator creates one reaction for
the reaction network resulting in a much larger network compared to the reaction
network of the implementation in Section 2.1 and moreover, this network again
has to be frequently updated during a simulation. This is the reason why other
languages, e.g., Kappa, Bionetgen or ML-Space, introduced specific operators for
binding.

2.3 Compartments and Dynamic Nestings

ML-Rules has been explicitly developed to support dynamically nested entities
and multi-level rules. Figure 5 shows an ML-Rules implementation of a hierar-
chical model, in which β-catenin proteins shuttle into and out of the nucleus.
Such processes are crucial for various pathways, e.g., the Wnt/β-catenin signaling
pathway [28]. Although rather abstract, the model exploits several multi-level
features of ML-Rules. First, compartments are defined marked with brackets
behind the parentheses of a species definition (ll. 8-9). Only compartments are
allowed to contain entities. Brackets are always used to describe nestings. Second,
the description of the initial solution (l. 13) defines a nested solution: three
cells are defined, each containing 10000 β-catenin proteins in its cytosol and
containing 4000 β-catenin proteins in its nucleus. The first rule (l. 16) describes
the shuttling of a β-catenin protein into a nucleus and the second rule (l. 17) out
of a nucleus. The rules employ so-called rest solution variables (<name>?). These



Pr
epr

int

ML-Rules 9

variables bind to the whole solution of a compartment except entities bound to
other reactants. For example, the rest solution s? of the reactant

Nucleus[BCat:b + s?]

represents the whole content of a nucleus except one β-catenin entity. No reactant
variables are used for the compartments, because they are currently treated
individually in ML-Rules, i.e., the amount of a compartment is 1, as the contents
of compartments typically vary. Since three cells are defined in the initial solution,
both rules map to three reactions resulting in a reaction network with six reactions.

The described model presents a system with a static nesting structure. How-
ever, ML-Rules also allows creating, changing, and destroying compartments by
rules. Figure 6 shows an ML-Rules implementation of an abstract endocytosis
model exploiting dynamic compartments with the following behavior. A particle
(Particle) can enter a cell (Cell) by forming an endosome compartment (Endo)
in the cell containing the particle. Two endosomes can fuse, i.e., a new endosome
is created that contains the content of both fused endosomes. Finally, endosomes
can fuse with existing lysosomes (Lyso) of the cell — the endosome is destroyed
and all content of the endosome is transferred to the lysosome.

The first rule (l. 15) describes the creation of an endosome containing the
particle. The second rule (l. 16) describes the fusion of two endosomes by creating
a new endosome containing the rest solutions of both reactant endosomes. The
third rule (l. 17) follows the same idea as the second rule, but instead of two
endosomes, one endosome and one lysosome merge to one lysosome. The concrete
reaction network described by the three rules depends on the current state of the
system, i.e., the reaction network is not fixed, but changes during a simulation
run. Therefore, analogous to infinite reaction networks caused by continuous
attributes of species, the simulator only computes a part of the reaction network
based on the current state and updates it regularly as needed.

The combination of compartments and attributed species is illustrated in
Figure 7, which shows a model using a numerical attribute to describe the volume
of a compartmental cell Cell. For this, the species definition of the cell assigns
a numerical attribute num to it (l. 9). Further, three species are defined that
represent proteins important for the cell cycle [35]: Cyclin representing the cyclin
protein, CDK representing a cyclin-dependent kinase, and MPF representing the
maturation-promoting factor composed of one cyclin and one cyclin-dependent
kinase.

Initially, the volume of all cells is 1.0 (l. 15). The first rule (ll. 18-19) de-
scribes the growth process of a cell. It uses an attribute variable: vol. During
the simulation, the simulator matches the reactant pattern Cell(vol)[s?] to
concrete Cell entities and uses their attribute values for this variable. Therefore,
one potential reaction is created for each Cell entity. The attribute variable vol
is also used to restrict the rule, i.e., it can only be applied to cells whose volume
is smaller than max. The second rule uses the attribute variable vol to adapt the
kinetic rate of this reaction, i.e., the larger the cell, the less likely the reaction.
Finally, the third rule simply describes the degradation of MPF to a Cyclin and
a CDK.



Pr
epr

int

10 Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher

1 // constants
2 k1: 0.001;
3 k2: 0.002;
4

5 // species definitions
6 Cell()[]; // compartment
7 Endo()[]; // compartment
8 Lyso()[]; // compartment
9 Particle();

10

11 // initial solution
12 >>INIT[100 Particle + 3 Cell[5 Lyso]];
13

14 // rules
15 Cell[s?] + Particle:p -> Cell[Endo[Particle] + s?] @ k1 * #p;
16 Endo[s1?] + Endo[s2?] -> Endo[s1? + s2?] @ k2;
17 Endo[s1?] + Lyso[s2?] -> Lyso[s1? + s2?] @ k2;

Fig. 6. An abstract endocytosis model illustrating the creation and fusion of compart-
ments.

2.4 Developing Complex Rules with Functions on Solutions

In some cases, modelers want to describe complex behavior that cannot be easily
realized with the presented features of ML-Rules like attributed species, dynamic
nestings, or multi-level rules. For example, although compartments can easily be
merged, how to split one compartment into two compartments? Further, how to
describe a significant change of the whole system with one rule, e.g., instantaneous
kill 10% of all cells due to the execution of a treatment?

Functions on solutions allow modelers to describe such complex phenomena.
They deal with solutions as input parameters. These input solutions can be
analyzed to compute some statistics required, e.g., calculate the average volume
of all existing cells. In addition, functions on solutions can also calculate an output
solution, e.g., how the content of a cell shall be split between its daughter cells.
ML-Rules provides a library of basic functions on solutions to realize common
tasks, e.g., to count a species in a solution or to remove one species from a
solution. A detailed list of library functions, which is regularly extended, is
available in the ML-Rules manual. However, we also added means — inspired by
functional programming — to ML-Rules which allow users implementing their
own functions on solutions within the model file.

Figure 8 shows a simple model using functions on solutions to realize the
partitioning of species during a cell division. The rule (ll. 17-19) takes a cell and
creates two new cells, whereby the content of the original cell represented by the
rest solution sol? is split by calling the function split in the where part of the
rule. A cell can only split if the number of proteins within this cell is greater than



Pr
epr

int

ML-Rules 11

1 // constants
2 k1: 0.001;
3 k2: 0.002;
4 k3: 0.004;
5 max: 3;
6 gf: 0.01;
7

8 // species definitions
9 Cell(num)[]; // cell with numerical volume

10 Cyclin();
11 CDC2();
12 MPF();
13

14 // initial solution
15 >>INIT[100 Cell(1.0)[100 CDC2 + 100 Cyclin]];
16

17 // rules
18 Cell(vol)[s?] -> Cell(vol+gf)[s?]
19 @ if (vol < max) then k1 else 0;
20 Cell(vol)[CDC2:cdc + Cyclin:cyc + s?] -> Cell(vol)[MPF + s?]
21 @ k2 * #cdc * #cyc / vol;
22 Cell(vol)[MPF:m + s?] -> Cell(vol)[CDC2 + Cyclin + s?]
23 @ k3 * #m;

Fig. 7. A simple model illustrating changes in attributes and content.

5 (l. 18). A tuple <left,right> is defined (l. 19), so that the variables left and
right represent both partitions of the original content assigned to sol?.

The function split is defined in the beginning of the model (ll. 1-7). Initially,
the type declaration of the function is given (l. 1): it has a solution as a parameter
and returns a tuple. The type declaration in ML-Rules reads like:

function name :: parameter type -> ... -> result type

Next, pattern matching of parameters is used to define different cases of a function
— analogous to pattern matching used in Haskell. The first case of split (l. 2)
is used when the function is called with an empty solution (denoted by empty
brackets). In this case, the function simply returns a tuple containing two empty
solutions. The second case (l. 4-7) describes the function when called with a
solution at least containing one entity. The parameter solution is written as
x + xs, whereby x is an arbitrary entity of the solution and xs is the rest of
the parameter solution. Three variables are calculated (ll. 5-7) to determine the
result tuple of this case. The variable numl represents the halved amount of
current entity x rounded down. The variable numr represents the other half of
the amount of x. For example, if x = 81 Particle, then numl = 40 and numr
= 41. The tuple <restl,restr> represents the partitioning of the solution xs,



Pr
epr

int

12 Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher

1 split :: sol -> tuple;
2 split [] = <[],[]>;
3 split x + xs = <new(numl,name(x),att(x)) + restl,
4 new(numr,name(x),att(x)) + restr>
5 where numl = round(amount(x)*0.5),
6 numr = amount(x) - numl,
7 <restl,restr> = split(xs);
8

9 //species
10 Cell()[];
11 Protein();
12

13 //initial solution
14 >>INIT[10 Cell[100 Protein]];
15

16 //reaction rules
17 Cell[sol?] -> Cell[left] + Cell[right]
18 @ if (count(sol?,’Protein’) > 5) then 1 else 0
19 where <left,right> = split(sol?);

Fig. 8. Example of functions on solutions.

i.e., here the recursive step is executed. By using these three variables, the result
of the function is a tuple, whereby the left (right) solution of the tuple contains
the recursively calculated left (right) partitioning of xs and the species x with
the amount numl (numr). The function new creates an entity with the given
parameter: the first parameter represents the amount of the calculated entity,
the second parameter represents the name of the calculated entity, and the third
parameter represents the attributes of the calculated entity.

We are aware that functions on solutions are a complex concept and modelers
who are not familiar with functional programming might be discouraged to
implement their own functions. Therefore, our aim is to extend the functions
library regularly to provide as many useful functions as possible.

3 The challenge of efficient simulations with ML-Rules

The standard simulator that ML-Rules is shipped with (and most of its variants)
base on the stochastic simulation algorithm (SSA) [14]. For a vector of chemical
species amounts

X = (x1, x2, . . . , xn) ∈ Nn

and a set of chemical reactions

R = {R1, R2, . . . , Rm},

where a chemical reaction Ri is characterized by a change vector

vi = (vi1, vi2, . . . , vin) ∈ Zn



Pr
epr

int

ML-Rules 13

and a kinetic rate function ai : Nn → R+, the SSA computes trajectories by
iteratively calculating the following steps:

1. Compute the sum of all kinetic rates: asum(X) =
∑m

i=1 ai(X).
2. Select one reaction to be fired. The probability P (Ri) to select a reaction Ri

is its relation of the kinetic rate ai(X) to asum(X):

P (Ri) =
ai(X)

asum(X)
.

Thus, the selection method finds the smallest index i so that

m∑
i=1

ai(X) > x,

where x is sampled from the uniform distribution U(0, asum(X)).
3. The selected reaction Ri is executed, i.e., X := X+ vi.
4. Finally, the simulation time is advanced by sampling a number from an

exponential distribution with rate λ = asum(X):

t := t+ Exp(asum(X)).

Applied to ML-Rules, the SSA has to be extended by an additional initial
step: The reaction set R has to be calculated. This has to be done since the
reaction set R is dynamic in ML-Rules for example due to dynamic structures
and therefore it is in general not sufficient to compute it once at the beginning
of the simulation, e.g., as it can be done in BioNetGen. Calculating the reaction
set usually causes most of the computational costs to simulate an ML-Rules
model. Even if R is only updated where necessary, i.e., only invalid reactions are
removed from R and new reactions are added to R, e.g., done efficiently by using
a dependency graph [13], the computational costs of the reaction set update still
dominate the load of an ML-Rules simulation. Nevertheless, for some ML-Rules
models, the reaction set might be fixed, so that the update is not necessary and
it can be avoided. For this case, we developed a tailored ML-Rules simulator
which performs significantly better for such models.

To calculate all reactions for a given rule, the simulator has to find all
entities for each reactant pattern that match this pattern. In ML-Rules, this
pattern matching can be a complex task in case functions on solutions are used,
e.g., if they iterate over solutions to calculate results. Particularly functions
implemented in the model file can decrease the runtime performance, because
these functions are so far not translated to Java code and compiled by the Java
compiler for an efficient execution, but they are kept in a symbolic representation
that has to be interpreted each time such a function is called. Transforming this
symbolic representation to native Java code that can be used more efficiently
by the ML-Rules simulator is part of future work. Besides, the so-called rigidity
property (Lemma 3 in [6]) does not hold generally in ML-Rules, see also the
discussion about the rigidity property referring to React(C) in [21]. This property



Pr
epr

int

14 Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher

implies that after matching one reactant pattern of a rule containing connected
reactants, the remaining matching process becomes clearly determined, i.e., for
each remaining reactant pattern, at most one concrete entity matches. Exploiting
this property can simplify the matching process [7]. In ML-Rules, all entities
enclosed in the same compartment are connected via this compartment and all
reactants are connected since they assume matched entities to be enclosed by
the same compartment. Nevertheless, for such connected reactants, the rigidity
property does not hold in general.

Besides the calculation of the reaction setR itself, the size ofR is an important
factor influencing the performance of reaction network simulations. For example,
in case of attributed species, huge reaction networks can easily be required
exponentially growing with the number of attributes per species. To deal with
this problem, network-free approaches have been developed that avoid an explicit
calculation of R, e.g., NFsim for BioNetGen [34]. NFSim treats every entity of
every species individually, i.e., the state of the system is a set of individuals.
Similarly, analog to Rete algorithms [12], the algorithm links every individual to
every reactant that it matches to. Next, the number of links to each reactant is
used to calculate the number of reactions that would be created if the reaction
set R would be calculated. For example, if 10 individuals match to the first
reactant of a rule and 20 individuals match to the second reactant of the rule,
10 · 20 = 200 reactions are possible between these individuals. This number is
used to calculate the kinetic rate of a rule by simply multiplying it with the rate
constant of the rule. Therefore, it is assumed that each combination of matched
individuals result in the same kinetic rate, i.e., in particular this implies that
rates are not allowed to depend on reactant variables. All kinetic rates of the
rules are then used like in the SSA, i.e., the sum of all rates is computed, one
rule is selected to be fired, and the simulation time is advanced based on the
sum of rates. The only difference is that the selected rule cannot be executed
directly, but concrete individuals for the reactants have to be selected first. After
executing a rule with selected individuals, the links of individuals to reactants
have to be updated properly. Altogether, this approach avoids the creation of the
reaction set R. A similar approach is used by the simulator of Bigraphs, which
also avoids the calculation of R [23].

Network-free approaches perform particularly well if reactants include many
links or attributes, i.e., the size of the rule set is much smaller than the size
of the reaction set. Although the network-free approach can be beneficial also
for ML-Rules models in principle, since kinetic rates often depend on reactant
variables, all models we developed so far for ML-Rules seem not suitable for
network-free simulation. There would simply be not enough links for the reactants
for the approach to become beneficial. However, this might be different for models
focusing on molecular binding of species to complexes. We have not implemented
a network-free simulator for ML-Rules yet and further research is needed to
evaluate the performance behavior of such a simulator for ML-Rules.

Instead of calculating every individual reaction separately, τ -leaping algo-
rithms leap ahead calculating reactions that would have occured during the leap



Pr
epr

int

ML-Rules 15

simultaneously. These approximate stochastic simulators trade accuracy for run-
time efficiency. We developed a τ -leaping simulator for ML-Rules, which results
in significant speed-ups for some models compared to the standard ML-Rules
simulator [17].

In case of large species amounts when stochastic effects become negligible,
chemical reaction networks can be simulated deterministically. For this deter-
ministic approximation, the rules are transformed to differential equations and
numerical integration methods are applied for the simulation. Therefore, the
reaction network described by the rules of the model must be finite and fixed to
calculate all differential equations. Models with continuous attributes or dynamic
nestings cannot be computed purely deterministically — hybrid variants that
treat some rules deterministically and some rules stochastically are needed, e.g.,
see [4, 9]. A hybrid simulator for ML-Rules models has also been developed for
ML-Rules [19].

Altogether, the simulation of ML-Rules models is a complex task — often
resulting in comparably slow simulation runs. To address this issue, several
simulators have been and are still being developed for ML-Rules [18], well aware
of the fact that the performance of simulators crucially depend on the model –
an observation which has also motivated the construction of different simulators
for other rule-based languages, e.g., BioNetGen [20]. Significant speedup can be
achieved for subsets of models that do not use the complete set of features offered
by ML-Rules, e.g., calculating kinetic rates based on current attribute values and
content, as in those situations short-cuts taken by other rule-based languages
are applicable. Approximate schemes are another possibility but the achieved
speed-up varies with the model. Generally, it is rather difficult to predict the
performance of simulators beforehand, here automatic selection procedures are
needed [16].

4 Experiments with ML-Rules and SESSL

ML-Rules models do not contain information about their use in simulation exper-
iments. It was a conscious decision to separate the model, i.e., the representation
of the system at hand, from the simulation experiment, i.e., the methods that
are involved in generating data from the model. Thereby, a central method is the
method used for executing the model (Section 3), but for experimenting with a
model more is needed: methods to initialize a model, to search the parameter
space of the model, or to determine which outputs to observe, to name only a
few [24]. By a clear separation of concern, different experimentation tools can be
used to conduct ML-Rules simulation studies, and conversely these experimen-
tation tools can employ different modeling languages. One tool that embodies
this philosophy of decoupling software packages is the Simulation Experiment
Specification via a Scala Layer (SESSL) [10].

SESSL is a domain-specific language that enables users to describe complex
simulation experiments in a way that is declarative and directly executable by a
computer. As an embedded language based on Scala, all parts of the experiment



Pr
epr

int

16 Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher

1Import SESSL core import sessl._
2Import ML-Rules binding import sessl.mlrules._
3
4Execute the following experiment execute {
5Include observation and parallelization new Experiment with Observation with

ParallelExecution {
6Location and name of model file model = "/data/models/endocytosis.mlrj"
7Choose a simulation algorithm simulator = StandardSimulator()
8Set parameter k1 to 0.005 set("k1" <∼ 0.005)
9Scan parameter k2 from 0.001 to 0.010 scan("k2" <∼ range(0.001, 0.001, 0.010))

10Use 4 threads parallelThreads = 4
1150 replications of each configuration replications = 50
12Simulation stops at time 1000 stopTime = 1000
13Observe the number of particles in endosomes observe("endo-part" ∼"Cell/Endo/Particle")
14Observe at 0, 100, 200, . . . , 1000 observeAt(range(0, 100, 1000))
15
16After each run withRunResult(results => {
17Output observed trajectory println(results∼"endo-part")
18 })
19 }
20 }

Fig. 9. A SESSL experiment using ML-Rules (Scala keywords are shown in blue).

specification are valid program code. When executed, SESSL translates the de-
scribed experiment to calls to a concrete simulation system, e.g., the ML-Rules
simulator, and translates back the simulation output. Thus, experiment specifica-
tions can be reused with several simulation systems. The only change required is
the binding, which manages the communication between SESSL and the simu-
lation system. SESSL supports several configuration options of the simulation
model and algorithm, e.g., model parametrization and observation, parallelization,
and complex replication and stop conditions. Differences in the feature sets of
different simulation systems are handled by the binding architecture. Besides
bindings to simulation systems, SESSL experiments can also employ bindings
for other tasks, such as output analysis, report generation, and simulation-based
optimization. In any case, SESSL delegates most of the actual work to exter-
nal software, thus forming a layer between users and heterogeneous simulation
software packages.

Figure 9 shows an example SESSL specification for an experiment using
ML-Rules. The simulation system to use is chosen by importing a binding (l.2).
Line 5 demonstrates a further feature of SESSL: Experiments are configured by
“mixing in” traits. This way, the feature set exploited by a concrete experiment is
denoted and the Scala compiler is able to verify that the imported binding supports
all feature traits that are mixed in. All bindings support the parametrization
of the model and simulation configuration such as simulation stop time and
replicating simulation runs. The binding for the ML-Rules simulation package
includes additional feature traits to support parallel execution of simulation
runs, complex replication conditions using confidence intervals, and also selective
observation of model variables. When executed, a SESSL experiment using the
ML-Rules binding initiates simulation runs with the specified configuration. For



Pr
epr

int

ML-Rules 17

1 import sessl._
2 import sessl.optimization._
3 import sessl.mlrules._
4 import sessl.opt4j._
5
6 val ref = Seq[Double](18000, 15000, 11500) // reference values
7
8 minimize { (params, objective) =>
9 execute {

10 new Experiment with ParallelExecution with Observation {
11 model = "/data/models/bcat.mlrj"
12 simulator = SimpleSimulator()
13 parallelThreads = -1
14 replications = 5
15 stopTime = 25
16 set("k1" <∼ params("k1")) // set model parameters as defined by optimizer
17 set("k2" <∼ params("k2"))
18 observe("nucBCat" ∼"Cell/Nucleus/BCat")
19 observeAt(0.0, 5.0, 20.0) // observation times of reference values
20 var runResults = 0.0
21 withRunResult(results => {
22 val numbers = results.values("nucBCat").asInstanceOf[Iterable[Double]]
23 runResults += Math.sqrt(mse(numbers, ref)) // calculate root mean square error
24 })
25 withReplicationsResult(results => {
26 objective <∼ runResults / replications // store value of objective function
27 runResults = 0.0
28 })
29 }
30 }
31 } using new Opt4JSetup {
32 param("k1", 0.01, 0.01, 0.2) // optimization parameter bounds
33 param("k2", 0.01, 0.01, 0.2)
34 optimizer = ParticleSwarmOptimization(iterations = 40, particles = 30)
35 withOptimizationResults { results =>
36 println("Overall results: " + results.head)
37 }
38 }

Fig. 10. A SESSL experiment using ML-Rules and Opt4J (Scala keywords are shown
in blue).

example, if the SESSL specification sets a model parameter, the value of the
homonymous constant in the ML-Rules file is overwritten.

The full power of SESSL becomes evident when an experiment combines
the functionality of several bindings. Figure 10 shows an experiment employing
simulation-based optimization for parameter fitting. A particle swarm optimiza-
tion algorithm provided by Opt4J [25] is used to search for the parametrization
of the model whose output most closely resembles a given sequence of reference
values, for example obtained in wet-lab experiments. The functionality of SESSL
can be augmented with custom user code, for example by invoking a function to
calculate the mean square error (l. 23). Besides parameter fitting, SESSL experi-
ments frequently employ statistical model checking [5]. Here SESSL’s declarative
nature comes in handy, e.g., by automatically generating experiments to support
the process of developing models [31].



Pr
epr

int

18 Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher

Using SESSL for specifying and executing ML-Rules experiments, instead
of providing a user-interface to select experimentation methods, adds to the
flexibility of executing experiments and tools to be used. SESSL provides the
means to specify and reuse experiments similarly as models are specified and
reused. The benefits of the approach are particularly evident for power-users as
it facilitates the realization and documentation of problem tailored experiments.
To ease also the regular modeler into using SESSL, we are currently developing a
SESSL editor, and are steadily increasing the number of SESSL experiments to
serve as a repository for future reuse.

5 Summary

This chapter gives an introduction to the rule-based modeling language ML-Rules.
Important features of the language have been presented and illustrated based
on simple model examples. The features that distinguish ML-Rules from other
approaches is its ability to handle dynamic nesting, e.g., endocytosis or cell pro-
liferation, and its support of arbitrary attributes and arbitrary function that can
be used to access and change attributes and content of species, and to constrain
the reactions. Thus, ML-Rules is a highly expressive language. This expressivity
unfortunately does not come for free. The simulator of ML-Rules has to deal
with infinite and dynamic reaction networks, resulting in regular, incremental
updates of the used reaction network and thus computational overhead. Besides,
we also showed how to execute complex simulation experiments with ML-Rules
and SESSL.

References

1. A. Bittig and A. M. Uhrmacher. ML-Space: Hybrid Spatial Gillespie and Par-
ticle Simulation of Multi-level Rule-based Models in Cell Biology. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2016. to appear.

2. M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek. BioNetGen: Software
for Rule-based Modeling of Signal Transduction Based on the Interactions of
Molecular Domains. Bioinformatics, 20(17):3289–3291, 2004.

3. D. T. Campbell. ‘Downward Causation’ in Hierarchically Organised Biological
Systems, pages 179–186. Macmillan Education UK, 1974.

4. Y. Cao, D. T. Gillespie, and L. R. Petzold. The slow-scale stochastic simulation
algorithm. The Journal of Chemical Physics, 122(1), 2005.

5. E. M. Clarke, J. R. Faeder, C. J. Langmead, L. A. Harris, S. K. Jha, and A. Legay.
Statistical Model Checking in BioLab: Applications to the Automated Analysis of
T-Cell Receptor Signaling Pathway. In M. Heiner and A. M. Uhrmacher, editors,
Computational Methods in Systems Biology, number 5307 in Lecture Notes in
Computer Science, pages 231–250. Springer Berlin Heidelberg, 2008.

6. V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable Simulation of Cellular
Signaling Networks, pages 139–157. Springer Berlin Heidelberg, 2007.

7. V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable Simulation of Cellular
Signaling Networks. In Proceedings of the 5th Asian Symposium on Programming
Languages and Systems, APLAS, pages 139–157, 2007.



Pr
epr

int

ML-Rules 19

8. V. Danos and C. Laneve. Formal molecular biology. Theoretical Computer Science,
325(1):69–110, 2004.

9. W. E, D. Liu, and E. Vanden-Eijnden. Nested stochastic simulation algorithm for
chemical kinetic systems with disparate rates. The Journal of Chemical Physics,
123(19), 2005.

10. R. Ewald and A. M. Uhrmacher. SESSL: A Domain-specific Language for Simulation
Experiments. ACM Transactions on Modeling and Computer Simulation, 24(2):11:1–
11:25, Feb. 2014.

11. J. R. Faeder, M. L. Blinov, B. Goldstein, and W. S. Hlavacek. Rule-based modeling
of biochemical networks. Complexity, 10(4):22–41, 2005.

12. C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19(1):17–37, 1982.

13. M. A. Gibson and J. Bruck. Efficient Exact Stochastic Simulation of Chemical
Systems with Many Species and Many Channels. The Journal of Chemical Physics,
104(9):1876–1889, 2000.

14. D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

15. F. Haack, H. Lemcke, R. Ewald, T. Rharass, and A. M. Uhrmacher. Spatio-
temporal Model of Endogenous ROS and Raft-Dependent WNT/Beta-Catenin
Signaling Driving Cell Fate Commitment in Human Neural Progenitor Cells. PLoS
Computational Biology, 11(3):e1004106, 2015.

16. T. Helms, R. Ewald, S. Rybacki, and A. M. Uhrmacher. Automatic Runtime
Adaptation for Component-Based Simulation Algorithms. ACM Transactions on
Modeling and Computer Simulation, 26(1):7:1–7:24, 2015.

17. T. Helms, M. Luboschik, H. Schumann, and A. M. Uhrmacher. An Approximate
Execution of Rule-Based Multi-level Models. In Proceedings of the 11th International
Conference on Computational Methods in Systems Biology, CMSB, pages 19–32,
2013.

18. T. Helms, T. Warnke, C. Maus, and A. M. Uhrmacher. Semantics and efficient simu-
lation algorithms of an expressive multilevel modeling language. ACM Transactions
on Modeling and Computer Simulation (TOMACS), 27(2):8:1–8:25, 2017.

19. T. Helms, P. Wilsdorf, and A. M. Uhrmacher. Hybrid Simulation of Dynamic
Reaction Networks in Multi-Level Models. In Proceedings of the 32nd Workshop on
Principles of Advanced and Distributed Simulation (PADS’18), 2018.

20. J. S. Hogg, L. A. Harris, L. J. Stover, N. S. Nair, and J. R. Faeder. Exact Hybrid
Particle/Population Simulation of Rule-Based Models of Biochemical Systems.
PLoS Computational Biology, 10(4):1–16, 04 2014.

21. M. John, C. Lhoussaine, J. Niehren, and C. Versari. Biochemical Reaction Rules
with Constraints. In Proceedings of the 20th European Symposium on Programming,
ESOP, pages 338–357, 2011.

22. S. L. P. Jones. Haskell 98 language and libraries: the revised report. Cambridge
University Press, 2003.

23. J. Krivine, R. Milner, and A. Troina. Stochastic Bigraphs. Electronic Notes in
Theoretical Computer Science, 218:73–96, 2008.

24. S. Leye, J. Himmelspach, and A. M. Uhrmacher. A Discussion on Experimental
Model Validation. pages 161–167. IEEE, 2009.

25. M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich. Opt4J: a modular framework
for meta-heuristic optimization. page 1723. ACM Press, 2011.

26. C. Maus. Toward Accessible Multilevel Modeling in Systems Biology: A Rule-based
Language Concept. PhD thesis, University of Rostock, 2013.



Pr
epr

int

20 Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher

27. C. Maus, S. Rybacki, and A. M. Uhrmacher. Rule-based multi-level modeling of
cell biological systems. BMC Systems Biology, 5(166), 2011.

28. O. Mazemondet, M. John, S. Leye, A. Rolfs, and A. M. Uhrmacher. Elucidating
the Sources of β-Catenin Dynamics in Human Neural Progenitor Cells. PLoS ONE,
7(8), 2012.

29. D. Noble. The MUSIC of LIFE: Biology Beyond Genes. Oxford University Press,
2008.

30. N. Oury and G. D. Plotkin. Multi-level modelling via stochastic multi-level multiset
rewriting. Mathematical Structures in Computer Science, 23(2):471–503, 2013.

31. D. Peng, T. Warnke, F. Haack, and A. M. Uhrmacher. Reusing simulation experi-
ment specifications to support developing models by successive extension. Simulation
Modelling Practice and Theory, 2016 (to appear).

32. C. Priami. Stochastic π-Calculus. The Computer Journal, 38(7):578–589, 1995.
33. R. G. Sargent. Verification and validation of simulation models. Journal of

simulation, 7(1):12–24, 2013.
34. M. W. Sneddon, J. R. Faeder, and T. Emonet. Efficient modeling, simulation and

coarse-graining of biological complexity with NFsim. Nature Methods, 8(2):177–183,
2011.

35. J. J. Tyson. Modeling the cell division cycle: cdc2 and cyclin interactions. Proceedings
of the National Academy of Sciences, 88(16):7328–7332, 1991.

36. T. Warnke, T. Helms, and A. M. Uhrmacher. Syntax and Semantics of a Multi-
Level Modeling Language. In Proceedings of the 3rd ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation (PADS), pages 133–144, 2015.

37. R. G. Wiegert. Holism and reductionism in ecology: Hypotheses, scale and systems
models. Oikos, 53(2):267–269, 1988.


