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Motivation

During the long history of modeling and simulation, many answers have been given to the question of how to specify simulation models. Many of these approaches can be perceived as domain-
specific modeling languages (DSML) offering a syntax and a semantics. However, the individual languages are often vastly different. A central distinguishing aspect is the classification as
external or internal domain-specific language. We illustrate the influence of using an external or internal language on different aspects of language performance, in particular the practical
expressiveness, one of the central properties of modeling languages.

Example Supply Chain Model (after Persson and Olhager 2002)

* Items flow through operations and tests, ending up as a finished product rework
» Each operation takes log-normally distributed time to complete

» Each test can succeed or fail —><>—> — <>—> —><>—> >

« After a test failure, the item is either scrapped or reworked and tested again, which takes log- op-1 test-1 op-2 op-3
normally distributed time to complete
* |tems are buffered in a queue in front of every operation and test Operation O Test <> Queue

Developing and using an external DSML Developing and using an internal DSML

operation: O COLON name operationDuration; def operation(name: String)(location: Double, shape: Double): Step = {

test: T COLON name failureProb SCRAP scrapProb REWORK reworkDuration; val o = new Operation(name, location, shape)
addStep(o)
3

val m = new Model {
operation("op1”")(0.4, 0.1)
test("opl-test”)(0.05) scrap (0.5) rework(0.1, 0.05)
operation("op2”")(0.4, 0.1)

: opl (0.4, 0.1) operation(”op3") (0.4, 0.1)

: opl-test (0.05) scrap (0.5) rework (0.1, 0.05) }
: op2 (0.4, 0.1)
: op3 (0.4, 0.1)

Simulator.execute(m)

External DSMLs are practically expressive because Internal DSMLs are practically expressive because
* they do not impose constraints when designing the language * they allow reusing the host language's ecosystem (editors, libraries, compilers)
» they define and document limits of their syntax and semantics * they allow modelers to implement model components in the host language
* they facialitate defining formal semantics * they reuse existing syntax and semantics
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