Universitat
Rostock

Traditio et Innovatio

Practical expressiveness of
internal and external domain-
specific modeling languages
Tom Warnke & Adelinde M. Uhrmacher

Motivation

During the long history of modeling and simulation, many answers have been given to the question of how to specify simulation models. Many of these approaches can be perceived as domain-
specific modeling languages (DSML) offering a syntax and a semantics. However, the individual languages are often vastly different. A central distinguishing aspect is the classification as
external or internal domain-specific language. We illustrate the influence of using an external or internal language on different aspects of language performance, in particular the practical
expressiveness, one of the central properties of modeling languages.

Example Supply Chain Model (after Persson and Olhager 2002)

* Items flow through operations and tests, ending up as a finished product rework
» Each operation takes log-normally distributed time to complete

» Each test can succeed or fail —><>—> — <>—> —><>—> >

« After a test failure, the item is either scrapped or reworked and tested again, which takes log- op-1 test-1 op-2 op-3
normally distributed time to complete
* |tems are buffered in a queue in front of every operation and test Operation O Test <> Queue

Developing and using an external DSML Developing and using an internal DSML

operation: O COLON name operationDuration; def operation(name: String)(location: Double, shape: Double): Step = {

test: T COLON name failureProb SCRAP scrapProb REWORK reworkDuration; val o = new Operation(name, location, shape)
addStep(o)
3

val m = new Model {
operation("op1”")(0.4, 0.1)
test("opl-test”)(0.05) scrap (0.5) rework(0.1, 0.05)
operation("op2”")(0.4, 0.1)

: opl (0.4, 0.1) operation(”op3") (0.4, 0.1)

: opl-test (0.05) scrap (0.5) rework (0.1, 0.05) }
: op2 (0.4, 0.1)
: op3 (0.4, 0.1)

Simulator.execute(m)

External DSMLs are practically expressive because Internal DSMLs are practically expressive because
* they do not impose constraints when designing the language * they allow reusing the host language's ecosystem (editors, libraries, compilers)
» they define and document limits of their syntax and semantics * they allow modelers to implement model components in the host language
* they facialitate defining formal semantics * they reuse existing syntax and semantics
Conclusion References
o iN- ifi i ' i i i i Persson, F., and J. Olhager. 2002. “Performance simulation of supply chain designs”.
Domalln spegﬂc moéelmg Iangu.ages imply str.|ct separation of model an.d simulation ntemational Joural of Production Economics 77 (3): 231 - 245,
* The simulation algorithm to use is completely independent from the choice of language Van Deursen, A., P. Klint, and J. Visser. 2000. “Domain-specific languages: An annotated bibliography”.

: _ , : : _ : Sigplan Notices 35 (6): 26-36.
» DSMLs speed up modeling (= human time) rather than simulation (= computer time) Felleisen, M. 1991, “On the expressive power of programming languages’

* Internal as well as external domain-specific languages can be interpreted and compiled Science of Computer Programming 17 (1): 35 - 75.
* Which approaches is more suitable depends heavily on the application domain

Tom Warnke | tom.warnke@uni-rostock.de

MODELING AND SIMULATION GROUP

UNIVERSITY OF ROSTOCK

mosi.informatik.uni-rostock.de






