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Abstract
Model development is a successive process of validating, revising, and extending models,
and requires iterative execution of simulation experiments. While developing a model by
extension, executing similar simulation experiments to those performed with the original
model reveals important behavioral insights into the extended model. An automatic
generation and execution of these simulation experiments can provide valuable support in
the process of developing models. A prerequisite is an explicit specification of simulation
experiments. Therefore, we annotate models with simulation experiments that are specified
in a declarative domain specific language SESSL (Simulation Experiment Specification via
a Scala Layer). Based on experiment specifications of the original model, we introduce a
mechanism to automatically generate and execute simulation experiments for the extended
model with necessary adaptations. Furthermore, as we experiment with stochastic models,
we exploit statistical model checking and specify the expected model behavioral properties,
against which the simulation results are checked. Thereby, when a model is extended,
the original experiment specifications are reused, adapted, and applied to the extended
model. Accordingly, the generated simulation trajectories are probed to check whether
the expected properties hold with a certain probability or not. Thus, more fast and
frequent feedback during model development can be provided to the modeler. Based on a
model of membrane related dynamics, we show how the developed approach can be used
in successively extending models.
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1. Introduction

Developing models presents itself as an intricate process and requires iterative exper-
imentation, validation and refinement, as described by different life-cycles, e.g., in [1].
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Often, models are generated incrementally. As soon as one part of the model satisfies
certain requirements (after iteratively executing experiments and revising the model),
new parts can be added. When a model is extended, it would be interesting to know
whether the extended model still behaves the same way as before, and which “properties”
of its behavior remain unchanged and which do not. Simulation experiments can provide
key insights into model behavior. Therefore, to analyze the impact that the extension has
on the model behavior, similar simulation experiments to those that have been conducted
with the original model are conducted with the extended model.

However, re-conducting prior simulation experiments on the extended model, es-
pecially by hand, is non-trivial and error-prone. First of all, the information of each
simulation experiment conducted on the original model needs to be recorded, along
with corresponding simulation results, for example in document files or spreadsheets.
Based on this information, simulation experiments are manually designed and executed
for the extended model. For each experiment configuration, the results from different
model versions are analyzed and compared. The situation is aggravated when models are
successively extended and many simulation experiments are conducted for each model
version during this process. Therefore, in this paper, we present an approach to support
the automatic generation and execution of experiments upon the extended model by
reusing the information about simulation experiments of the original model. Our goal is
to provide fast and frequent feedback during model development to the modeler.

Our work is based on explicit, unambiguous experiment specifications for executing
simulation experiments. To interweave modeling and experimentation, models are an-
notated with specifications of simulation experiments that have been executed, so that
those experiment specifications can be reused in revising and extending models. At the
moment a model is extended, the original simulation specifications are reused, adapted,
and applied to the extended model. As we focus on stochastic models and to make
the properties to be checked explicit, we make use of well-established statistical model
checking techniques to analyze simulation results, i.e., formalizing the interesting model
behavior properties and checking simulation results against those properties.

Even though the individual aspects of our approach, i.e., explicit specification of
simulation experiments (e.g., see [2]) and statistical model checking technique (e.g., see
[3]), are not new, the contribution of our approach lies in how they are brought together to
provide assistance in the process of model development by successively revising, extending,
and validating models.

In the following, we first discuss different aspects in reusing simulation experiments, i.e.,
specifying simulation experiments, specifying properties of model behavior and specifying
the data processing method. Next, we present the method for checking properties.
Afterwards, we illustrate the automatic experiment generation for the extended model
based on experiment specifications of the original model. For demonstration, we applied
our approach to the development of receptor dynamics models. Finally, we discuss related
work and the usability of our approach, and summarize the results.

2. Requirements for reusing simulation experiments

The essential idea of our approach is to reuse simulation experiments. To facilitate
the reuse of simulation experiments, an explicit, unambiguous description of experiments
is needed. For that, the information required has to be identified.

2



2.1. Structuring information about simulation experiments
An unambiguous and complete description of simulation experiments is of crucial

importance for their reproducibility and reuse. Many efforts have been dedicated to define
standards for describing simulation experiments, e.g., Minimum Information About a
Simulation Experiment (MIASE) [4] and Minimum Simulation Reporting Requirements
(MSRR) [5]. Following those guidelines, we distinguish four important aspects for
specifying simulation experiments: model configuration, simulation configuration, data
processing method and model behavioral property.

Model configuration defines how the model is used in the simulation experiment,
including its location, its initial state, and configuration of model parameters. Simulation
configuration describes the set-up of the simulation experiment (e.g., simulation algorithm
and stopping rules). Data processing method describes the method used to process the
output data of the simulation experiment, such as a smoothing method. Model behavioral
property defines the requirements a model’s behavior has to satisfy, which are reflected
in the generated experiment output. For example, in a cell model, one property could
be that the concentration of a certain protein should reach a steady state after a certain
simulation time.

2.2. Specifying simulation experiments
Numerous approaches exist to support the specification of experiments. For instance,

the Integrated Modeling Support Environment (IMSE) Experimenter, which is a graphical
tool to support experimentation with performance models [6], and the Experiment Schema
Extension (Ex-SE) of a framework [7], which combines performance model interchange
formats and experiment specifications to execute and analyze performance experiments,
are developed to facilitate the description, execution, and documentation of experiments
based on formal models. In addition, some other work exploits general scientific workflow
systems, such as Taverna [8], to specify simulation experiments, e.g., [9].

In the last decade, a series of domain specific languages (DSL) have been developed to
express different aspects of a simulation experiment [10]. A DSL is a language specialized
to a particular problem that “speaks” the language of the domain [11].

The Simulation Experiment Description Markup Language (SED-ML) [12] is an XML-
based language to encode and document simulation experiment information required by
MIASE, to facilitate exchange and reproduction of experiments in systems biology. It
allows describing most frequent types of simulation experiments and is independent of
concrete simulation systems. However, it only supports models described in XML and
encodes the description of simulation experiments in XML, which makes it more machine-
readable than human-readable, and therefore requires additional tools (e.g., SED-ED) to
be used by modelers [13]. Similarly, the ns-3 Experiment Description Language (NEDL)
[14] and the SAFE Language for Experiment Description (SLED) [10] are two external
domain specific languages for experiment description as well. While NEDL is based on
XML and SLED is based on JSON, both of them are specific to network simulation.

The Simulation Experiment Specification via a Scala Layer (SESSL) is an internal
domain specific language for simulation experiments [2]. It supports specifying experiments
in a declarative style for different simulation systems. Through creating a binding to a
specific simulation system in SESSL, the simulation experiments specified with SESSL
are actually performed with this simulation system. SESSL uses syntactic constructs
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of its host language Scala to create the “feel” of a simulation specification language.
By allowing the user to set up and to conduct simulation experiments regardless of the
software that actually executes the simulations, it represents an extra layer between the
user and the simulation system. The set-up of simulation experiments in SESSL consists
of not only the model configuration, but also the simulation configuration. Furthermore,
SESSL provides different bindings for analysis, e.g., simulation-based optimization.

To make it easy to follow, we explain the basics of SESSL with a concrete example. A
simple example is shown in Figure 1, which specifies and executes a simulation experiment
for the modeling and simulation framework JAMES II [15] via importing the binding
denoted by sessl.james._ (line 2). Other simulation systems can be used by replacing
the binding in the second line. As shown in line 3, an experiment is defined by instantiating
an anonymous sub-class of the class Experiment, and different traits can be mixed in
when necessary. For instance, the trait Observation facilitates the specification for result
processing, such as how to collect experiment output, and the trait ParallelExecution
allows the defined experiment to exploit the parallel resources available. In SESSL, based
on the features of the host language Scala, the definition of an experiment is realized by
the constructor of the anonymous class (line 4-12) and each line is a function invocation,
which may appear like an assignment (e.g., line 4 and 7). Line 4 indicates that a Lotka-
Volterra model, formalized in ML-Rules [16], is used for experimentation by assigning the
SESSL keyword model with the location “file-mlrj:/./LotkaVolterra.mlrj”. Line 5
specifies the configuration of model parameters nPredator and nPrey, whose value are
set as 50 and 500, respectively. Apart from parameter configuration with fixed values,
parameter scan is supported as well, as shown in line 6, where the model parameter nFood
is iterated over the range 100 to 200 with step size 10. The simulation algorithm to use
is determined by assigning the SESSL keyword “simulator” with the simulator name,
which is a defined case class in SESSL (see [2] for more detail). As depicted in line 7, the
simulation algorithm implemented in the case class “MLRulesReference” (presented in
[17] and [18]) is exploited for experiments. Line 8 specifies the simulation stop conditions,
i.e., the simulation stops when the wall clock time is 1 second or the simulation time is
500. During the simulation, the variable nPredator is observed (line 9) and recorded
every time unit from time 0 to time 500 (line 10), by including the trait Observation
(line 3). For each set-up, 10 simulation runs are carried out (line 11) and all except 2 of
available cores shall be used for parallel execution (line 12). Line 14 indicates executing
the defined experiment.

Besides all the features it provides, including the specification of model configuration
and simulation configuration, the most important aspect of SESSL for our approach
is that, as an internal domain specific language, it can be easily extended with new
features. Therefore, we chose SESSL to specify experiments, and extended it to allow
the specification of the data processing method and those required to support automatic
property checking.

2.3. Specifying the expected behavioral property
An explicit and unambiguous specification of the model and simulation configuration

allows for reproducing simulation experiments. However, the desired or expected behavior
of the model observed through the simulations has to be specified as well.

The description of model behavior can be supported by ontologies like TEDDY
(TErminology for the Description of DYnamics) [19]. TEDDY provides a machine-
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1 import sessl._
2 import sessl.james._
3 val exp = new Experiment with Observation with ParallelExecution {
4 model = "file-mlrj:/./LotkaVolterra.mlrj"
5 set("nPredator" <∼ 50, "nPrey" <∼ 500)
6 scan("nFood" <∼ range(100, 10, 200))
7 simulator = MLRulesReference()
8 stopCondition = AfterWallClockTime(seconds=1) or AfterSimTime(500)
9 observe("nPredator")

10 observeAt(range(0, 1, 500))
11 replications = 10
12 parallelThreads = -2
13 }
14 execute(exp)

Figure 1: A simple SESSL experiment specification.

readable classification of model behavior. However, as TEDDY focuses only on the most
critical features of experiment results through providing vocabularies, like increasing
or oscillation, this classification will in most cases not be sufficiently precise to capture
a certain model behavior and set it apart from irrelevant ones. Another method to
annotate models with experimental results is SBRML [20], which associates the model,
the process applied to the model and the data resulting from this process based on defining
ontologies in XML. While TEDDY aims at providing semantic information of models
and therefore facilitating their reuse, SBRML was developed for communicating and
exchanging simulation results. In our case we are interested in the process of developing
models by successive extension. Accordingly, rather than describing observed model
behavior as in the approaches above, we are interested in the specification of expected
model behavior. For example, a recorded experiment result could contain an experiment
set-up on a model that exhibits a steady state with a certain value x, but executing
experiments with the same set-up on the extended model might yield a steady state with
a value x′. Without further information about the expected behavior, it is impossible to
infer whether x and x′ are sufficiently close to each other so that the extended model still
meets the expectation.

Thus, our approach requires more precise specifications, possibly combining qualitative
and quantitative descriptions. This applies particularly to the representation of temporal
characteristics, as these play a central role in the description of dynamic model behavior.

During the last decades, temporal logics and model checking techniques [21] are in-
creasingly used for modeling and analyzing systems, e.g., in [22]. Properties are formalized
in temporal logics and then automatically verified with model checking algorithms. To
meet different requirements of specifying properties, numerous variants of temporal logics
based on LTL (Linear Temporal Logic) and CTL (Computational Tree Logic) have been
proposed, e.g., PCTL (Probabilistic Computation Tree Logic) [23], CSL (Continuous
Stochastic Logic) [24], QFTL(R) (Quantifier-Free First-Order LTL over the Reals) [25],
MITL (Metric Interval Temporal Logic) [26], and BLTL (Bounded Linear Temporal
Logic) [27]. These temporal logic approaches rely on modal operators to enrich logical
formulas with temporal aspects. Temporal properties can be expressed qualitatively
without explicit statements about time.

In many domains this can be seen as an advantage as it lowers the complexity of
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the expressions. However, this also limits the expressive power and the possibilities to
formulate statements with complex temporal characteristics. For example, temporal
logic extensions usually include a variant of the “globally” operator G. G[0,t](inc(v))
might state that the variable v increases strictly during the next t time units (cf. [28]).
While probabilistic variants are able to express that v increases during the interval with
a probability of at least p%, it is not possible to express that v increases during at least
p% of the interval. However, such a broad definition of the increase of a variable might
be appropriate in a stochastic model. Temporal logics cannot completely capture such
properties of stochastic trajectories. They are not able to deal with fluctuations in the
simulation trajectories that obscure the relevant properties.

As an alternative to modal operators, temporal characteristics can be incorporated in
logical expressions by augmenting first-order logic with temporal arguments [29]. Two ap-
proaches can be distinguished: Reified temporal logics exploit truth predicates that connect
a non-temporal statement with time points or intervals [30] (e.g., HOLDS[t1, t2, incr(v)]);
Non-reified temporal logics employ predicates with non-temporal and temporal arguments
simultaneously [31] (e.g., incr(t1, t2, v)). In both approaches, predicates on model vari-
ables are always evaluated with respect to time points or intervals and thus closely related
to the time axis, facilitating precise temporal statements. Model variables, time points,
and intervals can then further be related to each other using logical statements. The
expressive power of first-order logic allows for the definition of noise-tolerant descriptions.
However, the complexity of first-order logic is carried over as well, making descriptions
less accessible. Also, model checking is typically performed against specifications in
propositional logic rather than first-order logic. The first-order model checking problem
in general has been shown to be intractable; very little work exists on algorithms for
specifications in first-order logic [32].

We are concerned with simulations of stochastic models and intend to include a
readable description (for both human and machine) of expected or desired simulation
output in an experiment description. Taking the requirements to express properties for
stochastic models and provide an easily usable notation for properties, we end up in a
dilemma. On the one hand, first-order logics based methods are powerful, but quickly
require the user to write and read complex formulas. On the other hand, temporal logics
are well established, but lack an awareness of noise in trajectories. In this work, we
remedy this disadvantage of temporal logics by prepending a data processing step to the
checking of the property.

Based on a review of existing temporal logics, we decided to express properties
in mitl[a,b] [28]. The advantages of this language include its natural integration of
quantitative characteristics of temporal and non-temporal variables. We combine it
with the probabilistic operator as used in CSL to add a notion of stochasticity regarding
replications. Thus, we can embed mitl[a,b] formulas φ in Pronp(φ), where on∈ {<,≤, >,≥}.
For instance, Pr≥0.8(φ) holds if the probability that a random simulation run of the
model at hand satisfies the property φ is at least 80%.

2.4. Specifying data processing method
During the execution of simulation experiments, output data is generated, collected,

and further analyzed. However, the generated raw data may not be directly usable for
analysis. For example, in the output trajectories of simulation experiments on stochastic
models, high frequency fluctuations may overlay longer-term trends. To make such trends
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apparent also at short intervals, those fluctuations have to be filtered out, leading to a
smoothed trajectory. Temporal logic formulas can then be evaluated on these smoothed
trajectories without being disrupted.

As a proof of concept, our approach currently only supports one data processing
method for smoothing, i.e., the LOESS method (may be understood as standing for “LOcal
regrESSion”, as a generalization of LOWESS (Locally Weighted Scatterplot Smoothing)
[33]) originally proposed by Cleveland in [34]. We integrated the implementation of the
LOESS method from the Apache Commons Math library [35], with the bandwidth and
the number of robustness iterations configured by the user in SESSL, and the accuracy
set to 10−12. However, our approach is not limited to this method. Since we specify the
data processing method using SESSL, any data processing method can be incorporated
without much effort.

3. Proposed approach

The main purpose of our approach is to support the model development process. Each
model is annotated with specifications of simulation experiments that have been executed
with it. The user can take an existing model along with its experiment specifications, and
extend the model.

To reuse the experiment specifications of the original model for conducting experiments
on the extended model, certain adaptations may be required. Adaptation information
can be derived during the model extension and specified by the user. In addition, for the
expected behavioral properties of the original model, users can specify the expectation of
the result, i.e., which properties should hold and which should not when checked on the
extended model.

With the extended model, adaptation information and result expectation, the experi-
ment specifications of the original model are adapted to be used with the extended model.
Based on the adapted experiment specifications, simulation experiments are generated
and executed for the extended model, to check whether the corresponding properties still
hold or not and whether the test results are as expected. We designed and implemented
TAECS (a Tool for Adaptation, Execution and Checking of Simulation experiments) to
automatically realize this process.

Furthermore, the user can design and perform additional experiments on the extended
model, and the specifications of those experiments are executed and checked as well. If
the checking of an experiment specification fails, it is returned to the user for revision
and then checked again. Each experiment specification that has been checked successfully
is added as an annotation to the extended model. Figure 2 depicts the overview of the
general approach.

As discussed in Section 2, SESSL already provides suitable means for model and
simulator configuration, mitl[a,b] and CSL shall be used for property description, and a
LOESS smoother for data preprocessing. Therefore, we integrated those into SESSL so
that experiment specifications in SESSL can be reused as required. To check the properties,
prototypical methods for statistical model checking need to be realized. Furthermore, a
mechanism is required to automatically generate simulation experiments by reusing the
original ones, to execute these adapted experiments, and to perform statistical model
checking on the experiment results, which was realized in TAECS. We illustrate the three
aspects in the following.
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Figure 2: The approach overview. When the user extends an existing model, the corresponding experiment
specifications of the original model, adaptation information, result expectation and the extended model
are passed to TAECS, which first adapts the experiments and then executes and checks them. Besides,
TAECS can directly execute and check experiment specifications, which are created by the user either
through performing new experiments or through revising experiments that fail in previous checking.
When checked successfully, the model is annotated with the experiment specification.

3.1. Integration into SESSL
To enable describing the four aspects of a simulation experiment, i.e., model configu-

ration, simulation configuration, data processing method and model behavioral property,
we integrated the last two aspects into SESSL by extending the Hypothesis trait. An
example is depicted in Figure 3, based on the experiment shown in Figure 1.

Lines 5-6 depict the model configuration, i.e., the model used for experimentation and
the values of three model parameters (nPredator, nPrey and nFood). In the experiment
specification, the configuration of model parameters is completely determined and specified
by the user. In addition, a full configuration of model parameters is required in the model
file, and default values are provided for each model parameter. If explicit assignments
of model parameters are configured in the experiment specification, the experiment is
executed with those assignments, which could be different from the default values in the
model file; otherwise, the default values in the model file are used for the experiment.
The simulation configuration is shown in lines 8-11. Line 13 specifies the data processing
method, i.e., the LOESS method with the bandwidth parameter being 0.1 and the number
of robustness iterations parameter being 0. Lines 15-17 are the property specification
starting with the keyword assume. A probabilistic property is defined that for a simulation
run the probability that the inner property is satisfied is no less than 80% (line 15). The
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1 import sessl._
2 import sessl.james._
3 val exp = new Experiment extends Observation with Hypothesis {
4 //model configuration
5 model = "file-mlrj:/./LotkaVolterra.mlrj"
6 set("nPredator" <∼ 50, "nPrey" <∼ 500, "nFood" <∼ 100)
7 //simulation configuration
8 simulator = MLRulesReference()
9 stopCondition = AfterWallClockTime(seconds=1) or AfterSimTime(500)

10 observe("nPredator")
11 observeAt(range(0, 1, 500))
12 //data processing method
13 dataProcessor = LoessInterpolation(0.1, 0)
14 //property
15 assume{(Probability >= 0.8)(
16 G(0, 300, variable("nPredator") > 0) and F(300, 400, variable("nPredator") == 0)
17 )}
18 }

Figure 3: A SESSL experiment specification with four aspects: model configuration, simulation configu-
ration, data processing method and property.

inner property, an mitl[a,b] expression, is specified with the operators G and F, indicating
that from time 0 to time 300, the number of predator is always larger than 0 and within
the time interval 300 to 400, the number of predator will eventually drop to 0.

3.2. The algorithm for property checking
Statistical, simulation-based model checking techniques are frequently applied to

determine whether a stochastic model satisfies a specification in the form Pr≥p(φ) [3].
More precisely, such techniques can decide whether the probability p′ that a random
simulation run of executing the model satisfies a temporal logic formula φ is not smaller
than a threshold p ∈ [0, 1]. The central idea is to employ hypothesis testing to make this
decision based on a number of observed simulation runs [36].

We express the question whether p′ = Pr(φ) is at least p in two competing hypotheses.
The null hypothesis H0 : p′ < p states that Pr≥p(φ) does not hold; the alternative
hypothesis H1 : p′ ≥ p states that Pr≥p(φ) holds. We can now test these hypotheses
against each other. By rejecting H0, we gain some evidence that H1 and thus Pr≥p(φ)
holds; if we fail to reject H0, we gain some evidence against Pr≥p(φ). Hypothesis testing
can not guarantee that our result is correct. We can, however, limit the probabilities
of making a type I error (rejecting H0 although it is true) and making a type II error
(failing to reject H0 although it is false), termed α and β, respectively.

Smaller values for α and β correspond to a less uncertain test result. However, a low
probability for one error type can only be achieved by allowing a high probability for the
other error type. To make small values for α and β possible, a common approach is to
introduce an indifference region of width δ around p. Thus, the hypotheses H0 : p′ < p− δ
and H1 : p′ ≥ p+ δ are used instead.

Similar to Sen et al. [24], we reject H0 if, after executing n simulation runs, more
than p× n runs satisfy φ. We determine a minimal n based on given p, δ, α, and β by
increasing n until the type I error probability a ≤ α and the type II error probability
b ≤ β, as depicted in Algorithm 1. The error probabilities can be computed by assuming
real probabilities p′ = p± δ for given p, n, and δ [24].
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Algorithm 1 Algorithm for determining the number of replications needed to check
a property. The number X of simulation runs satisfying the temporal logic formula is
binomially distributed, with F being the cumulative distribution function.

1 calculateReplicationNumber(p, δ, α, β)
2 n ← 1
3 sufficient ← False
4 while(not sufficient)
5 n ← n + 1
6 a← P (X > p× n | X ∼ Bin(n, p− δ)) = 1− F (n× p;n, p− δ)
7 b← P (X ≤ p× n | X ∼ Bin(n, p + δ)) = F (n× p;n, p + δ)
8 sufficient ← a ≤ α ∧ b ≤ β
9 return n

φ

0 10 20 30 40 50

G[0,10](φ)

0 10 20 30 40 50

F [0,10](φ)

0 10 20 30 40 50

Figure 4: Example for obtaining valid intervals for formulas with temporal operators. The valid intervals
for the formulas G[0,10](φ) (φ holds during the next ten time units) and F[0,10](φ) (φ holds somewhere
in the next ten time units) shall be determined. The formula φ holds in the interval [30, 50]. Then the
formula G[0,10](φ) holds in [30, 40], and F[0,10](φ) holds in [20, 50]. Picture after Maler and Nickovic [28].

Aside from the statistical evaluation, the main work consists of determining whether
a single simulation run satisfies the mitl[a,b] formula. We adopted the algorithm for
checking mitl[a,b] formulas as proposed in [28]. To obtain the valid intervals for a given
formula, the valid intervals for its subformulas are recursively determined (an example
is shown in Figure 4). The logical operators negation, conjunction and disjunction are
mapped to inverting, intersecting and joining the sets of valid intervals. The valid intervals
for atomic propositions are determined directly from the trajectory data. This bottom-up
approach provides an elegant and efficient algorithm for obtaining the intervals where a
given complex formula holds. If one of these intervals contains the time point 0, i.e., the
beginning of the trajectory, the formula holds for the observed simulation run.

Special attention has to be given to the semantics of the intervals. As defined by Maler
and Nickovic, we interpret the intervals as left-closed right-open, such that they contain
their start point, but not their endpoint [28]. Although this would mathematically be
notated as [ti, ti+1), we follow the original authors and denote it as [ti, ti+1]. We use the
set of observed time points in the trajectory as the set of possible interval borders. We
define that a property holds in an atomic interval [ti, ti+1] if it holds at the observed time
point ti. Thus, we assume that the model state does not change (regarding the property
to check) between observations. Consequently, the observed trajectory should contain
enough data points to justify this assumption. As “enough” is highly model-dependent,
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it is crucial to interweave the configuration of model observation and mitl[a,b] property
checking in the experiment specification, e.g., provided by SESSL.

3.3. Experiment adaptation, execution and checking
In existing approaches (e.g., SED-ML and NEDL), generating and executing experi-

ments from description scripts typically refer to one specific model, i.e., the experiments
are generated and executed for the same model as the one documented in the experiment
description [12, 14].

However, when the experiment specifications of the original model are reused and
applied to the extended model, experiments are generated for a different model (i.e., the
extended model), rather than the model described in experiment specifications (i.e., the
original model). Seeing that the experiment generation of the extended model is based
on the experiment specifications of the original model, some adaptations are required
during experiment generation. First of all, the model to be experimented with has to
be adapted and configured as the extended model, instead of the original one. Model
parameters may also need to be adapted. For example, when new parameters are added,
their configuration is required for experimentation. However, they are not included in the
experiment specification of the original model. Also, the modeler may want to change the
configuration of existing parameters, e.g., renaming or reassigning values. In addition,
the model behavioral properties in the experiment specification may need adaptation as
well, if some model variables are renamed during model extension. Similarly, the variables
specified in the observation conditions may also need renaming.

For instance, a two-species (one prey and one predator) Lotka-Volterra model named
as LotkaVolterra is annotated with its experiment presented in Figure 3. The user
extends this model to a three-species food chain model ThreeSpeciesLotkaVolterra by
introducing a new species, which feeds on the predator in the original model. Therefore, the
extended model has one prey, one middle predator that is the predator in the original model,
and one top predator that is the newly introduced species. During the model extension, in
order to distinguish between two predators, the user renames the variables that are related
to the predator in the original model, e.g., changing nPredator to nMiddlePredator, and
also adjusts the assignment of some parameters, e.g., increasing nFood from 100 to 200.
Meanwhile, the initial number of the top predator needs to be specified, e.g., nTopPredator
is 30. Those changes are provided by the user as adaptation information. Consequently, in
order to reuse the experiment of the original model (i.e., the one presented in Figure 3) for
experimentation on the extended model, adaptation is required. The adapted experiment
is shown in Figure 5. Based on the adaptation information, the model location is updated
to the extended model file-mlrj:/./ThreeSpeciesLotkaVolterra.mlrj (line 5). The
model parameter nPredator needs to be renamed as nMiddlePredator, which leads to
an update in model configuration (line 6), observation condition (line 10) and property
(lines 16-17). The assignment of parameter nFood is updated to 200 and the configuration
of new parameter nTopPredator is added (line 6).

Currently, in our approach all the information needed for adapting the experiment
is specified by the user. However, we are in the process of developing a tool to guide
the user through the process of intertwining model generation, extension, and validation.
Future work will aim at automatically monitoring and analyzing changes while extending
a model to automatically generate suitable adaptation information. In this context, work
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1 import sessl._
2 import sessl.james._
3 val exp = new Experiment extends Observation with Hypothesis {
4 //model configuration
5 model = "file-mlrj:/./ThreeSpeciesLotkaVolterra.mlrj"
6 set("nMiddlePredator" <∼ 50,"nPrey" <∼ 500,"nFood" <∼ 200,"nTopPredator" <∼ 30)
7 //simulation configuration
8 simulator = MLRulesReference()
9 stopCondition = AfterWallClockTime(seconds=1) or AfterSimTime(500)

10 observe("nMiddlePredator")
11 observeAt(range(0, 1, 500))
12 //data processing method
13 dataProcessor = LoessInterpolation(0.1, 0)
14 //property
15 assume{(Probability >= 0.8)(
16 G(0, 300, variable("nMiddlePredator") > 0)
17 and F(300, 400, variable("nMiddlePredator") == 0)
18 )}
19 }

Figure 5: The adapted SESSL experiment based on the experiment described in Figure 3.

on model transformations (e.g., [37]) as well as model version control (e.g., [38]) will be
of relevance.

Furthermore, the user can state result expectations for the behavioral properties of
the original model, i.e., which properties are expected to still hold and which fail after the
extension, e.g., in the example of extending the Lotka-Volterra model described above,
the user may specify that the property of the original model in Figure 3 would still hold
for the extended model.

Therefore, in this case, which corresponds to the case A depicted in Figure 6, the
extended model, SESSL experiment specifications of the original model, adaptation
information and result expectation are handed over as input to TAECS. New SESSL
experiment specifications are automatically generated in TAECS through adapting the
original ones. Experiments are executed with the extended model based on those new
experiment specifications in SESSL, and further model behavioral properties are checked
against the experiments output, automatically.

The involved information can be structured as follows. We assume model m′ is an
extension of model m, and E is a set of experiments that have been executed with model
m. Each experiment e ∈ E contains a model configuration including model location em
and parameter assignment ea, a simulation configuration including observation conditions
eo, a data processing method ed, a model behavioral property ep and the replication
condition erep. Taking the experiment presented in Figure 3 as example, em is the
model file-mlrj:/./LotkaVolterra.mlrj (line 5) and ea is the configuration of three
parameters nPredator, nPrey and nFood (line 6-8). Lines 12-13 constitute observation
condition eo, which includes the variable to be observed (i.e., nPredator) and how to
observe (i.e., at each time point from time 0 to 500). The LOESS method denoted as
LoessInterpolation is the data processing method ed (line 15) and behavioral property
ep is depicted in lines 17-19. In this experiment, the replication number erep is not
specified explicitly, but determined by the approach presented in Algorithm 1, depending
on the probability defined in ep (i.e., 0.8 denoted in line 17), while in the experiment
defined in Figure 1, the erep indicates 10 replications (line 12).
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Experiment adaptation

Data processing

Property checking

Result return

Experiment execution

Case A
· Model
· Experiment specifications
· Adaptation information
· Result expectation

Case B

· Model
· Experiment specification

Figure 6: The working process of TAECS with two cases. In both case A and B, TAECS executes
experiments based on experiment specifications. And then corresponding data processing is performed on
the raw experiment results. Afterwards, the processed data are checked against specified properties. In
case A, TAECS takes experiment specifications, the model, adaptation information and result expectation
as input, and the experiment specifications are first adapted, while in case B it only takes the experiment
specifications and the model as input, and the experiment specifications are directly executed and checked
without adaptation.

In the adaptation information κ, users can specify the change of parameter config-
uration κa and the change of model variables κnames. In the example of extending
Lotka-Volterra model described above, κa includes assigning parameter nFood to 200
and nTopPredator to 30, and κnames is a mapping from variable name nPredator to
nMiddlePredator. Additionally, users can specify the expected result of checking the
property on the extended model m′ in the result expectation r, i.e., for each experiment
e in E, expecting that property ep will hold or not.

The procedure of TAECS in case A is depicted in Algorithm 2. The algorithm iterates
all experiments of the original model m. For each experiment e ∈ E, first of all, the
experiment is adapted based on the adaptation information κ (lines 9-14). The model
location em is updated (line 10). The configuration of model parameters ea, the variable
names in the property ep and the variable names in observation conditions eo are updated
as well (line 12). Apart from necessary adaptation, all the other aspects of the experiment,
e.g., the simulator, simulation stop time and the data processing method ed, remain the
same. Then the new experiment e′ is generated (line 14).

In stochastic simulation, replication numbers have an important influence on simulation
results, and therefore have an impact on the evaluation of properties. To gain confidence

13



Algorithm 2 Algorithm for reusing experiment specifications.
m′: the extended model.
E: experiments executed for model m.
κ: adaptation information.
r: result expectation.
δ, α, β: parameters required for calculating replication number.

1 // Test result
2 res← true
3 // Return set for successful experiments
4 E+ ← ∅
5 // Return set for failed experiments
6 E− ← ∅
7 for each experiment e ∈ E
8 /*** Experiment adaptation */
9 // Update model location to the extended model

10 em′ ← updateModel(em, m′)
11 // Update parameter configuration, property and observation variables
12 ea′, eo′, ep′ ← updateExperiment(e, κ)
13 // Generate experiment for the extended model
14 e′ ← generateExperiment(em′, ea′, eo′, ep′, e)
15 /*** Experiment execution */
16 // Determine replication number (see Algorithm 1)
17 e′rep ← calculateReplicationNumber(e′p, δ, α, β)
18 // Execute experiment
19 Y ← run(e′)
20 /*** Data Processing */
21 Y ′ ← processData(Y , e′d)
22 /*** Property checking */
23 result← check(e′p, Y ′)
24 /*** Result return */
25 // Add successful experiment
26 if(result is true)
27 E+ ← E+ ∪ {e′}
28 // Add failed experiment
29 else
30 E− ← E− ∪ {e′}
31 // Compare and aggregate adherence to result expectation
32 res← res ∧ (result equal getExpectation(r, e))
33 end for
34 return res, E+, E−
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in checking the probabilistic properties of the extended model, a specific strategy to
determine the replication number of experiments is required. Based on the specified
property, we use the approach presented in Algorithm 1 to determine the replication
number, which depends on the probability specified in the property (see discussion
in Section 3.2), by calling the function calculateReplicationNumber implemented in
Algorithm 1 (line 17). In our tool TAECS, δ, α, β are all configured with default value
0.05; however, they can be specified by the user as well.

Afterwards, the new experiment is executed, resulting in output trajectories Y (line
19). New trajectories Y ′ are obtained by applying the data processing method e′d on
the trajectories Y (line 21). The new trajectories Y ′ are checked against the property
e′p(line 23) and the checking result result is compared with the result expectation result′
specified by the user.

When all experiment specifications are adapted, executed and checked, two types of
information are returned to the user. On the one hand, the result expectation specified
by the user is tested against the checking result of each experiment specification, and
the test result is returned to the user, which corresponds to the res. When the checking
results of all experiments are as expected, the test result is true; if the checking result of
one experiment does not match the expectation, false will be returned (as depicted in line
32). As the result expectation is derived based on model extension by the user, with this
type of information, the user can find out whether the extended model actually behaves
as expected, and if not, the extension performed on the original model may need to be
revised. On the other hand, regardless of result expectations, the checking result of each
experiment specification is recorded and returned, which corresponds to E+ and E−
(lines 25-30). Those experiment specifications that are checked successfully are returned
to be annotated with this model; those whose checking result is false are returned to the
user for revision.

Besides reusing experiment specifications, the user can design and perform additional
experiments on the extended model, or revise the experiments that fail in the checking.
In both situations, an experiment specification and related model are passed to TAECS,
without adaptation on the experiment specification. This corresponds to the case B as
shown in Figure 6. Taking only the experiment specification and the model as input, the
algorithm for the procedure in case B is similar to Algorithm 2, without the experiment
adaptation and comparison to result expectation.

3.4. Implementation
The structure of the implementation of our approach is shown in Figure 7. It consists

of three layers.
The first layer serves as the user interface, where the user can specify the model

location and simulation experiments, and define the necessary information for adaptation
and the result expectation when experiment specifications need to be adapted. All of this
information is passed as input to the second layer. Currently, we employ the extended
SESSL as user interface. However, we are also in the process of developing a graphical
user interface, which allows the user to load the model and experiment specifications, as
well as specifying adaptations and result expectations more conveniently.

Based on the information handed over by the first layer, the second layer conducts
experimentation on the extended model with or without adaptation, and performs
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Trajectory analysis
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Figure 7: The architecture of our prototype implementation. As the user interface, a SESSL extension
is used in the upper layer where the user can specify the model, experiment specifications, adaptation
information and result expectation. The middle layer conducts experiments and performs data processing,
with two types of input, i.e., the model, experiment specifications, adaptation information and result
expectation, or only the model with the experiment specification. With output data and property, the
lower layer checks the property and returns checking results. The middle layer and the lower layer
constitute TAECS.

corresponding data processing on the raw simulation output. After data processing, the
third layer is triggered by the second layer to perform property checking, i.e., the simulation
output is checked against the formalized properties. So far, we have implemented one
checking algorithm for mitl[a,b] and one statistical model checking method, as described
in Section 3.2. Additional model checking approaches can be included as well.

TAECS consists of the second layer and the third layer, and is integrated into SESSL
as well. As SESSL supports different simulation systems by creating bindings, exchanging
modeling formalisms and simulation methods are implicitly supported by our approach.

4. Case Study

To illustrate our approach, we successively developed models that describe the process
of receptor ligand binding and subsequent signaling events (as shown in Figure 8) at
various levels of detail. Three models were developed one after another by extension,
following the previously described approach. At first a basic model (M0) describing the
formation of a simple ternary-complex at the membrane was developed and simulation
experiments were performed.

These experiments along with the corresponding behavioral properties of the model
(i.e., the ternary-complex model) were described with SESSL. Next, an extended model
(ME1) was developed by adding the process of endocytosis to the ternary-complex model
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Figure 8: The ligand receptor pathway.

(M0). Based on the experiment specifications of M0, we generated experiments for the
endocytosis model (ME1) and checked the model behavioral properties using our approach.
Repeating the same process, we further extended the endocytosis model (ME1) by means
of an recycling model (ME2).

4.1. Background - Signaling events induced by receptor-ligand binding
The binding of a ligand to a membrane-integral receptor plays a pivotal role in

cell communication. It is the initial step in cellular signal transduction and provides
the opportunity to transmit signals and information from the outside of the cell into
the inside. Once a ligand-receptor complex is successfully established, an intracellular
signaling cascade is initiated, which eventually leads to the input-specific response of
the cell, such as the specific expression of a target gene. The strength/effectiveness of
the signal response depends, among other, on how many ligands can be bound and, in
particular, how stable the complex is, i.e., how long the binding between receptor and
ligand lasts.

However, the stability as well as the function of the receptor complex is greatly
affected by other membrane-associated (peripheral) proteins that interact with the ligand-
receptor complex. Thereby the interaction may eventually lead to the formation of
a ternary complex, consisting of ligand, receptor and peripheral protein. Common
examples of proteins involved in the formation of ternary complexes are G-proteins,
coated pit adaptors, cytoskeletal elements or other receptors [39]. The impact of such
receptor coupling interactions and the formation of a ternary complex is two-fold. On
the one hand, the association and dissociation rates for receptor-ligand binding can vary
significantly between binary and ternary complexes —a fact that has to be taken into
close consideration when analyzing experimental data. Renown examples for this effect
are receptor/G-protein coupling and EGF receptor/adaptor coupling.

On the other hand, the interaction with membrane-associated proteins induces further
signaling events, like internalization (endocytosis) and recycling processes or receptor
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accumulation. With our exemplary model, we aim to capture the essential receptor-ligand
binding kinetics depending on the previously described receptor mediated events, i.e.,
receptor-protein coupling, internalization and recycling.

4.2. Modeling approach and simulation method
The models of our case study are described in ML-Rules. ML-Rules is a rule-based

language developed for supporting the modeling of cell biological systems [17, 40, 18]. It
supports nested rule schemata, the hierarchical dynamic nesting of species (e.g., to express
processes like endocytosis), the assignment of attributes and solutions to species at each
level, and a flexible definition of reaction rate kinetics. As ML-Rules allows the compact
description of rather complex models, means for a more efficient execution were developed,
e.g., approximate and adaptive algorithms [41] or strategies to automatically select and
configure suitable simulators [42]. Within our experiments the simulation algorithm
described in [17, 18] has been used, named as MLRulesReference. The modeling and
simulation framework JAMES II was exploited as the simulation system which actually
executes the experiments specified in SESSL.

Throughout our case study we used the method presented in [24] as discussed in
Section 3.2 to determine replication numbers with α = β = δ = 0.05.

4.3. Basic model (M0) - Ternary-complex formation
We started our case study with the development of the ternary-complex model, as

depicted in Figure 9, and would successively extend it with endocytosis and recycling
processes. Accordingly the most basic version of the model contains four different species:
ligand (L), receptor (R), adaptor protein (X) and a representation for protein complexes
(C), which can have different states, depending on how many compounds are bound. For
simplicity we disregard the scenario where cytosolic proteins bind the receptor first and
after that the ligand is bound. We motivate this assumption by the fact that the reaction
rate constants for this scenario are significantly lower, therefore can be neglected in the
model.

The ternary-complex model is of general nature, but can be parametrized and fitted
to match the dynamics of specific pathways. In this case study we aim to reproduce
EGF / EGFR binding kinetics that were experimentally determined in fibroblasts. In the
wet-lab experiments, cells were stimulated for a certain time with EGF and the binding
kinetics were observed by measuring the amount of ligand/receptor complexes at different
time points. After a given time, cells were washed and EGF was completely removed
from the system. For this system the reaction rate constants of all reactions are available

L

C1

X

R C2

Cell

kf1 / kr1

kc1 / ku1

Figure 9: The ternary-complex model (M0).
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and were used to parametrize our ternary model (see supplementary file). In our model
we applied a concentration of 5× 10−10 as EGF stimulus for a time period of 15 minutes,
i.e., after 15 minutes all remaining EGF molecules are removed, similar to the wet-lab
experimental set-up [43].

We chose the number of receptor (R), adaptor protein (X) and the number of a repre-
sentation for protein complexes (C) as species of interest to explore behavior properties
of the ternary-complex model (M0). To run simulation experiments, we configured the
model parameters as follows:

nR: 6e04, nL: 1.05e09, nX: 2.4e04,

where nR, nL and nX denote the initial number of species R, L and X, respectively.
To investigate the dynamics of the three species of interest, we set the simulation

stop time as 2000 simulation time units (with one time unit corresponding to one
second in the wet-lab experiments). The model was formalized in ML-Rules [17] and we
chose the simulation algorithm presented in [18], i.e., MLRulesReference, for simulation
experiments. Since ML-Rules is based on Continuous-Time Markov Chain semantics, the
results are stochastic and therefore multiple replications are required. To explore the
behavior of the model, we firstly configured each simulation experiment with replication
number being 200. Simulation experiments were executed and the number of the three
species (R, C and X) were observed, named as variable Cell/R, Cell/C and Cell/X in
the model, respectively. The simulation trajectories of the observed variables are shown in
Figure 10 (a), (b) and (c), and are in good agreement with wet-lab experimental results
[43]. Due to the stochasticity, some “noise” exists in the generated simulation trajectories.
We applied the LOESS method to the original trajectories, with the bandwidth parameter
being 0.1 and the number of robustness iterations parameter being 0, and the smoothed
trajectories are shown in Figure 10 (d), (e) and (f). However, the LOESS method may
have an impact on the initial value in the trajectories, such as decreasing or increasing
the values, e.g., in Figure 10 (d) and (a), or (e) and (b). However, this decreasing or
increasing of values does not affect the model behavioral properties we inspected in our
case study. This also applies to the experiments of the two extended models ME1 and
ME2, which will be discussed in Section 4.4 and 4.5, i.e., Figure 13 and 17.

Through analyzing the simulation results, we derived the model behavioral properties
regarding the three species as follows:

• Species Cell/R: with a probability of no less than 0.75, the species number remains
within the range [57000, 58000] over the time interval [300, 800], and reaches a
steady state over the time interval [1200, 2000] with the amount being in the range
[59750, 59850].

• Species Cell/C: with a probability of no less than 0.95, the species number remains
within the range [2000, 2300] over the time interval [300, 800], and reaches a steady
state over the time interval [1300, 2000] with the amount being in the range [150,
250].

• Species Cell/X: with a probability of no less than 0.85, the species number decreases
over the time interval [0, 800] and increases over the time interval [1300, 2000].
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(a) Original trajectory of species Cell/R
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(b) Original trajectory of species Cell/C
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(c) Original trajectory of species Cell/X
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(d) Smoothed trajectory of species Cell/R
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(e) Smoothed trajectory of species Cell/C
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(f) Smoothed trajectory of species Cell/X

Figure 7: Simulation results of the ternary-complex model for 200 replications, with the mean trajectories (red)
and the standard error of the mean (grey error bars). For all trajectories, the simulation stop time is after 2,000
time units. (a), (b) and (c) are the original trajectories from simulation experiments; (d), (e) and (f) are the
smoothed trajectories using the smoothing method xxxx, respectively.

1 val exp = new Experiment with Observation with Hypothesis {
2 model = "file-sr:/./TernaryComplexModel.mlrj"
3 set("nR" <∼ 6e04, "nL" <∼ 1.05e09, "nX" <∼ 2.4e04)
4 simulator = MLRulesTauLeaping()
5 replications = 200
6 stopTime = 2000
7 dataPreProcessor = LoessInterpolation(0.1, 0)
8 observeAt(0, 1, 2000)
9

10 assume{(Probability >= 0.95)(
11 G(300, 800, variable("Cell/C") >=2000 and

variable("Cell/C") <= 2300) and
12 G(1300, 2000, variable("Cell/C") >= 150 and

variable("Cell/C") <= 250)
13 )}
14 }

(a) Experiment and property specification for species Cell/C

1 assume{(Probability >= 0.8)(
2 G(300, 800, (variable("Cell/R") >= 57000) and

(variable("Cell/R") <= 58000))
3 and G(1200, 2000, ((variable("Cell/R") >= 59750) and

variable("Cell/R") <= 59850))
4 )}

(b) Property specification for species Cell/R

1 assume{(Probability >= 0.9)(
2 G(0, 800, d("Cell/X") <= 0) and G(1300, 2000, d("Cell/X")

>= 0)
3 )}

(c) Property specification for species Cell/X

Figure 8: Experiments and properties specification of the ternary-complex model in SESSL.

successively extend it with endocytosis and recycling
processes. Accordingly the most basic version of the
model contains four different species: ligand (L), recep-
tor (R), adaptor protein (X) and a representation for
protein complexes (C), which can have different states,
depending on how many compounds are bound. For
simplicity we disregard the scenario where cytosolic pro-
teins bind the receptor first and after that the ligand is
bound. We motivate this assumption by the fact that
the reaction rate constants for this scenario are signifi-
cantly lower, therefore can be neglected in the model.

The ternary complex model is of general nature, but
can be parametrized and fitted to match the dynamics
of specific pathways. In this case study we aim to repro-
duce EGF / EGFR binding kinetics that were experi-
mentally determined in fibroblasts. In the experiments,

cells were stimulated for a certain time with EGF and
the binding kinetics were observed by measuring the
amount of ligand/receptor complexes at different time
points. After a given time, cells were washed and EGF
was completely removed from the system. For this sys-
tem the reaction rate constants of all reactions are avail-
able and will be used to parametrize our ternary model
(see Supplemental Information). In our model we apply
a concentration of 5× 10−10 as EGF stimulus for a time
period of 15 minutes, i.e., after 15 minutes all remaining
EGF molecules are removed from the system, similar to
the experimental set-up. Corresponding simulation tra-
jectory for ternary complex model are depicted in Fig. 7.
The trajectory is in good agreement with experimental
results.

We chose receptor (R), adaptor protein (X) and a rep-

8

Figure 10: Simulation results of the ternary-complex model (M0). The mean trajectories (in red) with
the standard error (in gray error bars) are shown. For all trajectories, the simulation stop time is after
2,000 time units. (a), (b) and (c) are the original trajectories from simulation experiments; (d), (e) and
(f) are the smoothed trajectories using the LOESS method on the original ones, respectively. Please note,
as a result of the smoothing the initial values of trajectories (d) and (e) slightly deviate from the original
trajectories (a) and (b). As explained in the text, this deviation does not affect the considered model
behavioral properties, hence does not bias our test results.

Based on the simulation set-up and derived properties, we specified the experiments on
model M0 in SESSL for each species of interest. For all species, the model configuration,
simulation configuration and data processing method are the same, while the specifica-
tions of the model behavioral property are different. We present the three experiment
specifications in Figure 11, with complete SESSL experiment specification regarding
species Cell/R shown in Figure 11 (a), including the model configuration, simulation
configuration, data processing method and model behavioral property. For simplicity, we
only depict the property specifications regarding species Cell/C and Cell/X, as shown in
Figure 11 (b) and (c). To describe properties that a variable increases or decreases, we
use the first order deviation of the variable, which is specified as d("variableName") in
SESSL. For example, a property that the number of species Cell/X decreases is expressed
as d("Cell/X") <= 0 in SESSL, which means the first order deviation of the number of
Cell/X is less than 0, as shown in Figure 11 (c).

We tested each of the three experiment specifications on the ternary-complex model
(M0) using TAECS, which corresponds to case B in Figure 6. The necessary replication
numbers for checking the properties of Cell/R, Cell/C and Cell/X were automatically
determined, i.e., 205, 77 and 154, respectively. All experiment specifications were checked
successfully, and therefore the ternary-complex model M0 was annotated with the three
experiment specifications.

20



1 import sessl._
2 import sessl.james._
3 val exp = new Experiment with Observation with Hypothesis {
4 model = "file-mlrj:/./TernaryComplexModel.mlrj"
5 set("nR" <∼ 6e04, "nL" <∼ 1.05e09, "nX" <∼ 2.4e04)
6 simulator = MLRulesReference()
7 stopTime = 2000
8 observe("Cell/R")
9 observeAt(range(0, 1, 2000))

10 dataPreProcessor = LoessInterpolation(0.1, 0)
11 assume{(Probability >= 0.75)(
12 G(300, 800, (variable("Cell/R") >= 57000) and (variable("Cell/R") <= 58000))
13 and G(1200, 2000, ((variable("Cell/R") >= 59750) and variable("Cell/R") <= 59850))
14 )}
15 }

(a) Experiment specification regarding species Cell/R

1 assume{(Probability >= 0.95)(
2 G(300, 800, variable("Cell/C") >= 2000 and variable("Cell/C") <= 2300)
3 and G(1300, 2000, variable("Cell/C") >= 150 and variable("Cell/C") <= 250)
4 )}

(b) Specification of model behavioral property regarding species Cell/C

1 assume{(Probability >= 0.85)(
2 G(0, 800, d("Cell/X") <= 0) and G(1300, 2000,d("Cell/X")>=0)
3 )}

(c) Specification of model behavioral property regarding species Cell/X

Figure 11: Experiment specifications of the ternary-complex model (M0) in SESSL.

4.4. Model extension 1 (ME1) - Endocytosis
The binding of adaptor proteins, such as clathrin, to the ligand-receptor complex often

induces the endocytosis of the complex. This means the receptor complex is internalized
into the cytosol as part of an endosome. As a result, ligand, receptor and adaptor proteins
are not available at the cell surface anymore. This process is the subject of the first
extension of our basic ternary-complex model (M0). Accordingly, we introduced a first
order reaction that describes the internalization of the ternary complex into a cytoplasmic
endosome with a certain rate constant ke1 (see Figure 12).

The extension of the model directly influences the validity of the assumptions made
for the ternary-complex model. On the one hand, species that are encapsulated in the
endosomes change their location (i.e. Cell/C → Cell/Endosome/C). As a result, we
assume that the maximum amount of Cell/C will be lower in the endocytosis model
(ME1) than in the ternary-complex model (M0), as a portion of the complexes C will also
be located within endosomes (Cell/Endosome/C). We thus expected that the properties
defined and checked for Cell/C in the ternary-complex model will not hold in the
endocytosis model. On the other hand we also have to consider the species that are
transferred to the endosome as part of the complex, i.e., Cell/R and Cell/X. These
species are not available for the backward reactions (kr1, ku1 ), hence their amount should
decrease by the number of complexes internalized. Accordingly, their property should be
violated in the endocytosis model (ME1) as well.
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Figure 12: The endocytosis model (ME1).

4.4.1. Reusing simulation experiments of the ternary-complex model
To inspect the behavior of the first extended model (ME1), we reused the simulation

experiments conducted on the ternary-complex model (M0). The model location needs
to be adapted from the original model (M0) to the extended model (ME1). Since there
is no change in model parameters, no adaptation is necessary for their configuration.
We performed tests using our approach, which corresponds to case A in Figure 6, with
the input of the extended model ME1, experiment specifications shown in Figure 11,
adaptation information (i.e., the new model location) and result expectation (i.e., all the
three experiments would fail). Experiments were generated and checked by adapting the
existing ones. The testing results are described in Table 1, and the simulation trajectories
are shown in Figure 13 (a), (b) and (c).

Based on our previous assumption, the properties regarding all three species in the
ternary-complex model should be violated in the endocytosis model. However, the testing
results revealed that only the properties regarding Cell/C and Cell/X are violated,
whereas the property regarding Cell/R is still valid in the endocytosis model (see Table 1
and Figure 13), which is contrary to our previous assumption.

After revising our simulation experiments we found that this apparent contradiction can
be resolved by applying a longer simulation run time. In fact, for simulation experiments
on the ternary-complex model, at the end of the simulation the trajectory of Cell/R
is not in steady state but increases slowly, with a sufficiently long simulation run time
(30,000 instead of 2,000 time units), as shown in Figure 14 (a). However, in the trajectory
from simulation experiments on the endocytosis model with 30,000 time units, the number
of species Cell/R reaches a steady state and is lower than that on the ternary-complex
model at the end of simulation, as shown in Figure 14 (d). Therefore, the behavioral
property regarding species Cell/R exhibited in the endocytosis model does differ from

Table 1: Results of testing on the endocytosis model (ME1) by reusing experiments of the ternary-complex
model (M0).

Property Replication number Assumed result Test result
Cell/R 205 false true
Cell/C 77 false false
Cell/X 154 false false
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(a) Original trajectory of Cell/R
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(b) Original trajectory of Cell/C
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(c) Original trajectory of Cell/X

Time (sim time unit)
1 sim time unit = 1 second

0 400 800 1200 1600 2000N
um

be
r 

of
 C

 in
 E

nd
os

om
e

0

50

100

150

200

250

(d) Original trajectory of
Cell/Endosome/C
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(e) Smoothed trajectory of Cell/R
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(f) Smoothed trajectory of Cell/C
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(g) Smoothed trajectory of Cell/X
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(h) Smoothed trajectory of
Cell/Endosome/C

Figure 10: Simulation result of the endocytosis model for 200 replications, with the mean trajectories (red) and
the standard error of the mean (grey error bars). For all trajectories, the simulation stop time is after 2,000 time
units. (a), (b), (c) and (d) are the original trajectories from simulation experiments; (e), (f), (g) and (h) are the
smoothed trajectories using the smoothing method xxxx, respectively.
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(a) Trajectory of species Cell/R in the ternary-
complex model
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(b) Trajectory of species Cell/C in the ternary-
complex model
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(c) Trajectory of species Cell/X in the ternary-
complex model
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(d) Trajectory of species Cell/R in the endocy-
tosis model
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(e) Trajectory of species Cell/C in the endocy-
tosis model
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(f) Trajectory of species Cell/X in the endocy-
tosis model

Figure 11: Simulation trajectories of the ternary-complex model and the endocytosis model, with the mean
trajectories (red) and the standard error of the mean (grey error bars). For all trajectories, the simulation stop
time is after 30,000 time units.

11f, and 11e, we can see that in the endocytosis model,
there is no significant change in the trajectories after
2,000 simulation steps. Therefore, we still chose to run
the simulation till 2000 steps. For all of the three species,
i.e., Cell/X, Cell/R and Cell/C, the model configu-

ration and simulation configuration in SESSL remain
the same as in the ternary-complex model (cf. Fig-
ure 8), except for the model location. According to
the trajectories shown in Figure 10, the properties of
both Cell/C and Cell/X require to be revised, which

10

Figure 13: Simulation results of the endocytosis model (ME1). The mean trajectories (in red) with the
standard error (in gray error bars) are shown. For all trajectories, the simulation stop time is after 2,000
time units. (a), (b), (c) and (d) are the original trajectories from simulation experiments; (e), (f), (g)
and (h) are the smoothed trajectories using the LOESS method on the original ones, respectively.

that exhibited in the ternary-complex model, which is in agreement with our assumption.

4.4.2. Annotating experiment specifications for further extension
While the experiment specification regarding species Cell/R was checked successfully

and therefore annotated with model ME1, as shown in Figure 15 (a), the two other
experiment specifications of the ternary-complex model (M0) failed in the checking,
which need to be revised. From the simulation trajectories shown in Figure 14 (d), (e)
and (f), we can see that in the endocytosis model, there is no significant change in the
trajectories after 2,000 time units and the model behavior reaches steady state. As the
main behavioral properties of this model can be reflected in the trajectories within 2000
time units, for better illustration in the paper, we chose to stay with 2000 time units as
the simulation stop time for the subsequent simulation experiments.

Besides, according to our extension, the receptor complex in the endocytosis is
of interest. Therefore we performed simulation experiments to observe the species
Cell/Endosome/C and the simulation trajectories are shown in Figure13 (d) and (h).
Based on the simulation results, we derived three new properties of the endocytosis model
(ME1), described as below.

• Species Cell/C: with a probability of no less than 0.75, the species number reaches
a steady state over the time interval [300, 800] with the amount being in the range
[1900, 2200], and also reaches a steady state over the time interval [1600, 2000] with
the amount being 0.

• Species Cell/X: with a probability of no less than 0.75, the species number decreases
over the time interval [0, 900] and reaches a steady state over the time interval
[1200, 2000] with the amount being in the range [23700, 23800].
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(a) Original trajectory of Cell/R
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(b) Original trajectory of Cell/C
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(c) Original trajectory of Cell/X
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(d) Original trajectory of
Cell/Endosome/C

Time (sim time unit)
1 sim time unit = 1 second

0 400 800 1200 1600 2000

N
um

be
r 

of
 R

 in
 C

el
l #104

5.75

5.8

5.85

5.9

5.95

6

(e) Smoothed trajectory of Cell/R
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(f) Smoothed trajectory of Cell/C
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(g) Smoothed trajectory of Cell/X
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(h) Smoothed trajectory of
Cell/Endosome/C

Figure 9: Simulation result of the endocytosis model for 200 replications, with the mean trajectories (red) and
the standard error of the mean (grey error bars). For all trajectories, the simulation stop time is after 2,000 time
units. (a), (b), (c) and (d) are the original trajectories from simulation experiments; (e), (f), (g) and (h) are the
smoothed trajectories using the smoothing method xxxx, respectively.
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(a) Trajectory of species Cell/R in the ternary-
complex model (M0)

Time (sim time unit)
1 sim time unit = 1 second #104

0 0.5 1 1.5 2 2.5 3

N
um

be
r 

of
 C

 in
 C

el
l

0

400

800

1200

1600

2000

2400

(b) Trajectory of species Cell/C in the ternary-
complex model (M0)

Time (sim time unit)
1 sim time unit = 1 second #104

0 0.5 1 1.5 2 2.5 3

N
um

be
r 

of
 X

 in
 C

el
l #104

2.375

2.38

2.385

2.39

2.395

2.4

(c) Trajectory of species Cell/X in the ternary-
complex model (M0)
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(d) Trajectory of species Cell/R in the endocy-
tosis model (ME1)
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(e) Trajectory of species Cell/C in the endocy-
tosis model (ME1)
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(f) Trajectory of species Cell/X in the endocy-
tosis model (ME1)

Figure 10: Simulation trajectories of the ternary-complex model and the endocytosis model, with the mean
trajectories (red) and the standard error of the mean (grey error bars). For all trajectories, the simulation stop
time is after 30,000 time units.

using the experiment information of the endocytosis
model. Experiments were automatically generated and
executed on the recycling model, and the properties were
checked. The test results are shown in Table 2, and the
simulation trajectories are shown in Figure 13. Our as-

sumptions are indeed reflected in the test results, i.e.,
the model extension worked as intended.

10

Figure 14: Simulation trajectories of the ternary-complex model (M0) and the endocytosis model (ME1)
with long simulation run time (30,000 time units). The mean trajectories (in red) with the standard error
(in gray error bars) are shown. (a), (b) and (c) are the trajectories from the ternary-complex model; (d),
(e) and (f) are the trajectories from the endocytosis model.

• Species Cell/Endosome/C: with a probability of no less than 0.75, the species
number increases over the time interval [0, 900] and reaches a steady state over the
time interval [1200, 2000] with the amount being in the range [200, 250].

For all of the three species, the model configuration, the simulation configuration
and the data processing method remain the same as that in the experiment specification
regarding species Cell/R. We specified the simulation experiments and corresponding
properties regarding the three species in SESSL, and present the property specifications
in Figure 15 (b), (c) and (d). Furthermore, we checked the experiment specifications
with TAECS using the procedure of case B shown in Figure 6, and all of them succeeded.
Therefore, the endocytosis model (ME1) was annotated with all four simulation exper-
iment specifications, i.e., experiments regarding species Cell/R, Cell/C, Cell/X and
Cell/Endosome/C, as depicted in Figure 15.

4.5. Model extension 2 (ME2) - Recycling
Typically, during endocytosis the internalized receptor complex gets dissociated.

Subsequently the receptor is recycled back to the membrane, while the ligand and adaptor
protein are transferred to a lysosome, where they are degraded, as shown in Figure 16.

We further extended the endocytosis model (ME1) by this process, yielding the second
extended model ME2, i.e., the recycling model. As a result, the concentration of the
receptors in the cell should be slowly restored after the washing step, hence resemble the
dynamics of the ternary-complex model, but not the endocytosis model.

In contrast, the ternary complex Cell/C and its remaining components, i.e., Cell/X,
are still encapsulated from the cell, i.e., its dynamics do not change compared to the
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1 import sessl._
2 import sessl.james._
3 val exp = new Experiment with Observation with Hypothesis {
4 model = "file-mlrj:/./EndocytosisModel.mlrj"
5 set("nR" <∼ 6e04, "nL" <∼ 1.05e09, "nX" <∼ 2.4e04)
6 simulator = MLRulesReference()
7 stopTime = 2000
8 observe("Cell/R")
9 observeAt(range(0, 1, 2000))

10 dataPreProcessor = LoessInterpolation(0.1, 0)
11 assume{(Probability >= 0.75)(
12 G(300, 800, (variable("Cell/R") >= 57000) and (variable("Cell/R") <= 58000))
13 and G(1200, 2000, ((variable("Cell/R") >= 59750) and variable("Cell/R") <= 59850))
14 )}
15 }

(a) Experiment specification regarding species Cell/R

1 assume{(Probability >= 0.75)(
2 G(300, 800, variable("Cell/C") >= 1900 and variable("Cell/C") <= 2200)
3 and G(1600, 2000, variable("Cell/C") == 0)
4 )}

(b) Specification of model behavioral property regarding species Cell/C

1 assume{(Probability >= 0.75)(
2 G(0.0, 900, d("Cell/X") <= 0) and
3 G(1200, 2000, variable("Cell/X") >= 23700 and variable("Cell/X") <= 23800)
4 )}

(c) Specification of model behavioral property regarding species Cell/X

1 assume{(Probability >= 0.75)(
2 G(0, 900, d("Cell/Endosome/C") > 0) and
3 G(1200, 2000, variable("Cell/Endosome/C") >= 200 and variable("Cell/Endosome/C") <= 250)
4 )}

(d) Specification of model behavioral property regarding species Cell/Endosome/C

Figure 15: Experiment specifications of the endocytosis model (ME1) in SESSL

endocytosis model. However, since species C in the endosome is being degraded, it cannot
aggregate in the endosome as it did in the endocytosis model. Thus, when checking
whether the properties defined for the endocytosis model also hold for the recycling model,
we expect that the properties regarding species Cell/R and Cell/Endosome/C do not
hold, while the properties regarding species X and species C in Cell still hold.

We applied our approach on the recycling model, by reusing the simulation experiment
specifications of the endocytosis model depicted in Figure 15. The four experiment
specifications, together with the newly extended model ME2, adaptation information
(only includes the new model location, as no adaptation is needed for model parameters
and properties) and result expectation were passed to TAECS. Using the procedure of
the case A presented in Figure 6, experiments were automatically generated by adapting
the experiment specifications of ME1 and executed on the recycling model ME2, and
corresponding properties were checked.

The test results (Table 2) show the experiments regarding species Cell/C and
Cell/X were checked successfully, while the experiments regarding species Cell/R and
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Figure 16: The recycling model (ME2).
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(a) Original trajectory of Cell/R
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(b) Original trajectory of Cell/C
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(c) Original trajectory of Cell/X
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(d) Original trajectory of
Cell/Endosome/C
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(e) Smoothed trajectory of Cell/R
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(f) Smoothed trajectory of Cell/C
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(g) Smoothed trajectory of Cell/X
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(h) Smoothed trajectory of
Cell/Endosome/C

Figure 14: Simulation results of the recycling model for 200 replications, with the mean trajectories (red) and the
standard error of the mean (grey error bars). The simulation stop time is after 2,000 time units. (a), (b), (c) and
(d) are the original trajectories from simulation experiments; (e), (f), (g) and (h) are the smoothed trajectories
using the smoothing method xxxx, respectively.

Table 2: Results of testing on the recycling model.
Property Replication

number
Assumed
result

Test
result

Cell/C 205 true true
Cell/R 200 false false
Cell/X 205 true true
Cell/Endosome/C 205 false false

as the German Research Foundation (DFG) via research
grant UH-66/15-1.
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Figure 17: Simulation results of the recycling model (ME2). The mean trajectories (in red) with the
standard error (in gray error bars) are shown. For all trajectories, the simulation stop time is after 2,000
time units. (a), (b), (c) and (d) are the original trajectories from simulation experiments; (e), (f), (g)
and (h) are the smoothed trajectories using the LOESS method on the original ones, respectively.

Cell/Endsome/C failed. Our assumptions are indeed reflected in the test results, i.e., the
model extension worked as intended. The simulation trajectories are shown in Figure 17.
The model ME2 can be annotated with the experiment specifications that were successfully
checked, whereas the failed ones need revision.

5. Discussion

In recent years, more and more researchers employ model checking techniques to
support model validation, such as [44, 45, 46]. The model behavioral properties of interest
are formalized with temporal logics and the experiment results of models are checked
against those properties.

In those approaches, only interesting properties of the model behavior are explicitly
specified so that they can be checked in model validation. However, model validation
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Table 2: Results of testing on the recycling model (ME2) by reusing experiments of the endocytosis
model (ME1).

Property Replication number Assumed result Test result
Cell/R 205 false false
Cell/C 205 true true
Cell/X 205 true true
Cell/Endosome/C 205 false false

is always related to the experiment (cf. [47] p.5). Thus, we take a step further by
bringing simulation experiments and model behavioral properties together. We describe
experiments explicitly and unambiguously in SESSL, use mitl[a,b] to specify model
behavioral properties and document them together with the model. Therefore, the
simulation experiments that are conducted to validate models can be reproduced and the
same behavioral properties that are checked for validation can be checked again.

Other approaches exist to document models and simulation experiments. For example,
[48] proposes to associate models with their simulation experiments in graph databases,
which aims to provide benefits in model storage and retrieval. In [49], an on-line resource
was presented, where models and simulation experiments (protocols) are encoded sep-
arately. Different simulation experiments can be applied to the model for inspection.
The focus is on analyzing and comparing behavior of different models under different
experimental conditions.

In our approach, we annotate models and the simulation experiments that have been
executed with it, as well as the key behavioral properties the model exhibits in the
experiments. Our approach aims at supporting the process of model extension. As a
model is extended, the model behavioral properties, which are checked with simulation
experiments on the original model, may be interesting for inspecting the behavior of
the extended model. Thus, those simulation experiments need to be repeated on the
extended model. By explicitly specifying simulation experiments, our approach reuses
the experiment specifications of the original model to automatically perform experiments
on the extended model and check the properties, and therefore provides insights into the
behavior of the extended model.

Apart from performing automatic experimentation by reusing experiment specifications,
our tool TAECS can assist the user in directly conducting experiments on models and
documentation of experiments as well.

The presented approach bears similarities to the idea of regression testing in software
development, i.e., upon a modification of the software under development, previously
created software test cases are reused to ensure that the modification does not introduce
any new faults. Two types of regression testing are distinguished: progressive regression
testing, where the specification of the software is changed due to new requirements
or new features added to the software, and corrective regression testing, where only
design decisions and instructions of the software are involved and the specification
remains unmodified [50]. Progressive regression testing, i.e., modifying software and its
specification, corresponds to extending a model and updating its behavioral properties in
our approach. In the regression testing process, existing test cases are often analyzed to
identify the obsolete test cases, which are defined as those that “can no longer be used”,
e.g., a test case whose input/output relation becomes incorrect due to the specification
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modification [50]. The obsolete test cases are not tested for the modified software. In
our approach, model extension may result in the change of model behavior so that some
behavioral properties that used to hold for the original model would be violated for the
extended model. However, instead of eliminating those experiments, we still reuse them
to generate experiments for the extended model. In addition, we allow the user to specify
the expected outcome and compare it to the checking results. Many efforts have been
devoted to support regression testing, e.g., on selection of test cases [51]. So far, the focus
has been mostly on corrective regression testing [52].

Our approach is mainly concerned with stochastic models. When conducting simulation
experiments with stochastic models, stochasticity has to be taken into account. In addition
to the requirement for multiple replications, the stochastic fluctuations contained in
individual simulation trajectories need to be considered as well for property checking [53].
One way to separate short-term fluctuations from interesting trends in the trajectory is
the LOESS method, as described in detail in [54].

In the case study, we employed ML-Rules for the models and one of its simulation
algorithm to run experiments. However, our approach is independent of simulation
systems, modeling formalisms and simulation methods. Although currently only mitl[a,b]
and CSL are used to specify model behavioral properties and one checking method is
implemented, our approach is open to extension with other temporal logics or specification
languages and model checking algorithms, to express more complex properties and different
types of properties, such as robustness analysis (see [55], [56]).

Even though our approach was applied in the field of systems biology for the case
study, it is not restricted to this and can be used to support model development in other
areas as well.

6. Conclusions

In this paper, we present an approach to support model extension based on reusing
simulation experiments. We rely on an explicit specification of simulation experiments of
the original model and statistical model checking mechanisms to automatically conduct
experimentation on the extended model. The simulation experiments are described
in SESSL (Simulation Experiment Specification via a Scala Layer), and we employ
mitl[a,b] (Metric Interval Temporal Logic) and CSL (Continuous Stochastic Logic) to
specify the expected model behavioral properties, against which the simulation results
are checked. Since we are experimenting with stochastic models, to alleviate the influence
of stochasticity on the result checking, the LOESS (LOcal regrESSion) method is used to
smooth simulation trajectories, which contain stochastic noise.

By bringing together a declarative, unambiguous specification of simulation experi-
ments, statistical model checking, and certain adaptation rules, simulation experiments
performed with previous versions of a model can be used to automatically check properties
after extending a model and, thereby, illuminate the impact of these changes on model
behavior. By employing this approach during model development, the intricate process of
successively refining, extending and validating models and the process’ documentation
are facilitated.

With the promising results of applying our approach in a biological case study, i.e.,
developing three models of a receptor ligand pathway, we have shown the benefit of the
presented approach in providing assistance for model development.
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