
Spatiotemporal Pattern Matching in RoboCup

TOM WARNKE ADELINDE UHRMACHER

University of Rostock, Institute of Computer Science Modeling and Simulation Group

Spatiotemporal Patterns in Football Tactics

Source: spielverlagerung.de

Rostock

Traditio et Innovatio

Spatiotemporal Pattern Matching in RoboCup Contributions

Agents moving simultaneously give rise to spatiotemporal patterns. How to describe and find such patterns?

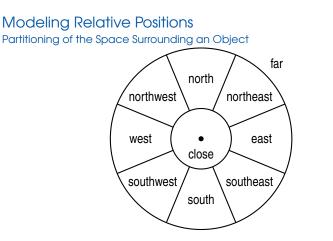
We

- model the movement data as a data graph
- describe spatiotemporal patterns as graph patterns
- find these graph patterns in the data graph

Starting Point

Raw data:

Rostock


- RoboCup¹: coordinates of each player and the ball are saved every 100 ms
- Real football: similar data is gathered (but largely inaccessible)

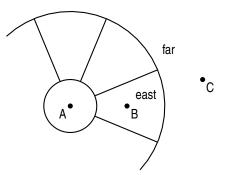
Patterns involve:

- Players of both teams and the ball
- Development during a (typically short) time span
- Relative position rather than absolute

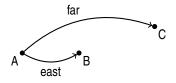
¹RoboCup 2D Soccer Simulation League



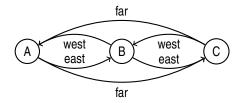
Frank, A.U.: Qualitative spatial reasoning about distances and directions in geographic space. Journal of Visual Languages & Computing 3(4), 343–371 (1992)


Traditio et Innovatio

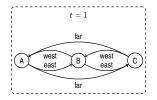
Creating the Graph Three Object Positions in Space



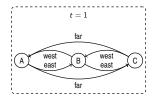
Creating the Graph Three Object Positions in Space

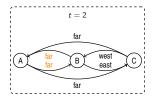


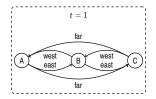
Creating the Graph Relation Graph

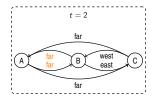


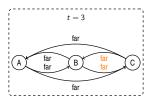
Creating the Graph Complete Relation Graph




Creating the Graph One Relation Graph for Each Time Point


Creating the Graph One Relation Graph for Each Time Point

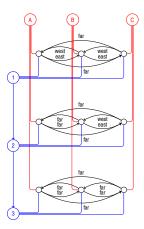




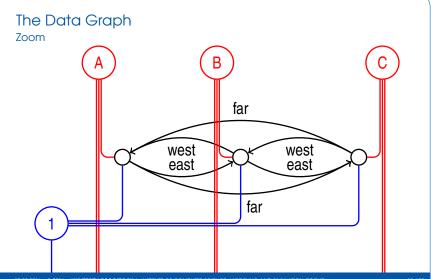
Creating the Graph One Relation Graph for Each Time Point

Traditio et Innovatio

Intermission


Simple patterns (without change over time) are already findable in these graphs (e.g., three objects in a straight line from east to west).

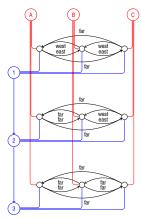
To include change over time, we have to connect the single graphs.

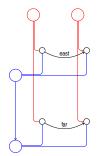


Traditio et Innovatio

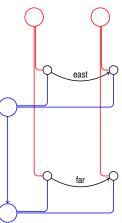
The Data Graph

30.09.2016 © 2016 UNIVERSITY OF ROSTOCK I INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP


Patterns in the Data Graph


All relevant movement data is captured in the graph.

Movement patterns can be defined as graph patterns.


Patterns in the Data Graph

Patterns in the Data Graph Zoom

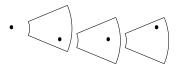
Rostock

Finding Patterns in the Data

- Ullmann's algorithm², a classic subgraph isomorphism algorithm
 - Custom Java implementation
 - Match nodes one by one, use backtracking
 - Heavy optimization for the data graph structure
- Neo4j³, a graph database system with a query language
 - Well-established and actively developed open-source software
 - Powerful guery language Cypher allows for succinct pattern definitions ۲
 - Advanced features (e.g., joins, where clauses, paths of variable length)

²Ullmann, J.R.: An Algorithm for Subgraph Isomorphism. Journal of the ACM 23(1), 31–42 (1976) ³neo4j.com

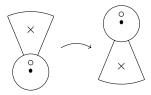
Proof of concept


Evaluation on RoboCup Simulation Data

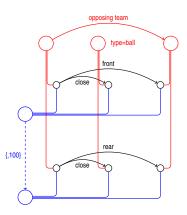
- Simulate and monitor RoboCup matches of the team WrightEagle⁴ against itself
- Construct data graph from gathered data
- Find patterns in the data
 - "Back four"
 - "Getting past a defender"
- Source code available at git.informatik.uni-rostock.de/mosi/RobocupAnalysis

⁴http://ai.ustc.edu.cn/2d/

Pattern I: The back four


- Players must be in the same team
- Must hold for 5 (10) consecutive time points
- Neo4j took 2 (3) minutes, Ullmann's algorithm 8 (12) minutes
- Majority of pattern occurrences found in the defensive lines (~30% each)

Cypher query Back four


Pattern II: Getting past a defender

- Players in opposing teams, movement towards opponents goal
- Second state must be reached at most 100 steps (= 10s) after the first
- Neo4j took less than one minute, Ullmann's algorithm does not support paths of variable length
- Most occurrences involve the central forwards

Pattern Graph Getting past a defender

Conclusions

Rostock

- With an appropriate partition of space, spatiotemporal data and patterns can be transformed to graphs and graph patterns.
- Graph patterns are declarative.
- Non-spatial information can easily be integrated.
- Many methods for pattern definition and finding exist and can be exploited.
- Neo4j is a useful tool, but its correct use is not so easy.
- Our approach is useful for *coordinated* simultaneous movement of agents.