
Population-Based CTMCs and
Agent-Based Models

Population-Based CTMCs and
Agent-Based Models

TOM WARNKE, OLIVER REINHARDT, and ADELINDE M.
UHRMACHER
Institute of Computer Science, University of Rostock

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 1 / 17

Population-Based CTMCs and
Agent-Based Models

Continuous-time agent-based modeling

• Social scientists develop continuous-time models

• demographic events (marriage, childbirth, death)

• decision processes (e.g., migration)

• Agent-based models are mostly implemented in ABMS frameworks
(Repast Simphony, NetLogo, etc.)

• These frameworks lack support for continuous-time models

• Solution 1: Develop an external domain specific language1

• Solution 2: Integrate continuous-time modeling into ABMS frameworks

1T. Warnke, A. Steiniger, A. M. Uhrmacher, A. Klabunde, and F. Willekens. 2015. ML3: A Language
for Compact Modeling of Linked Lives in Computational Demography. WSC 2015.

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 2 / 17

http://dx.doi.org/10.1109/WSC.2015.7408382
http://dx.doi.org/10.1109/WSC.2015.7408382

Population-Based CTMCs and
Agent-Based Models

Continuous-time population-based modeling
Example: An SIR model

• Three sub-populations of Susceptible, Infectious, and Recovered individuals

• Each model state is a triple (S, I, R)
• Two possible transitions:

• A susceptible agents gets infected

• An infectious agent recovers

• Exponentially distributed waiting time for each possible state transition

⇒ Continuous-Time Markov Chain (CTMC)

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 3 / 17

Population-Based CTMCs and
Agent-Based Models

Formalisms for population CTMCs
State space and state transitions

(S, I, R) s + i a−→ i + i

i b−→ r

(5, 1, 0)

(5, 0, 1)

(4, 2, 0)

(4, 1, 1)

(3, 3, 0)

(3, 2, 1)

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 4 / 17

Population-Based CTMCs and
Agent-Based Models

Formalisms for population CTMCs
State space and state transitions

(S, I, R) s + i a−→ i + i

i b−→ r

(5, 1, 0)

(5, 0, 1)

(4, 2, 0)

(4, 1, 1)

(3, 3, 0)

(3, 2, 1)

4× a

5× a 8× a

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 5 / 17

Population-Based CTMCs and
Agent-Based Models

Formalisms for population CTMCs
Simulation and stochastic race

(S, I, R) s + i a−→ i + i

i b−→ r

(4, 2, 0)

(?, ?, ?)

(?, ?, ?)

2× b 8× a

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 6 / 17

Population-Based CTMCs and
Agent-Based Models

An agent-based continuous-time SIR model

• Agents are connected in a network

• Susceptible agents get infected after a stochastic waiting time based on the
number of infected network neighbors

• Infected agents recover after a stochastic waiting time

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 7 / 17

Population-Based CTMCs and
Agent-Based Models

SIR model in Repast Simphony
A small snippet of the behavior specification (about 50 lines)

private void scheduleInfection () {
double currentTime = schedule.getTickCount ();
double infectiousNeighbors = getInfectiousNeighbors ();
if (infectiousNeighbors == 0) {

scheduledEvent = null;
} else {

double rate = infectionRate * infectiousNeighbors;
double waitingTime = RandomHelper.createExponential(rate).

nextDouble ();
scheduledEvent = schedule.schedule(ScheduleParameters.createOneTime

(currentTime + waitingTime), this , "getInfected");
}

}

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 8 / 17

Population-Based CTMCs and
Agent-Based Models

Assessment

• Repast Simphony provides a schedule object that allows inserting events in
an event queue

• Continuous-time models require manually scheduling and retracting events

• The resulting model- and simulation-specific code is mixed

⇒ Model is not readable

⇒ Reusing code is hard

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 9 / 17

Population-Based CTMCs and
Agent-Based Models

Scheduling in Vanilla Repast Simphony

Repast Simphony

Event Queue

Agent DefinitionAgent DefinitionAgent
Scheduling

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 10 / 17

Population-Based CTMCs and
Agent-Based Models

Scheduling in Repast Simphony with the simulation layer

Repast Simphony

Event Queue

Agent DefinitionAgent DefinitionAgent

Simulation Layer
Scheduling

Interface

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 11 / 17

Population-Based CTMCs and
Agent-Based Models

SIR model in Repast Simphony with the simulation layer
The complete behavior specification (10 lines)

addRule (() -> this.isInfectious (),
() -> exp(recoverRate),
() -> this.infectionState = InfectionState.RECOVERED);

addRule (() -> this.isSusceptible (),
() -> exp(infectionRate * neighbours(SIRAgent.class).

filter ((SIRAgent agent) -> agent.isInfectious ()).
size()),

() -> this.infectionState = InfectionState.INFECTIOUS);

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 12 / 17

Population-Based CTMCs and
Agent-Based Models

The simulation layer

• The simulation layer provides an interface with a domain-specific language
(DSL) for succinct definition of agent behavior

• Agents can define their behavior as rules (guard, waiting time, effect)

• The simulation layer can query all agents for their behavior rules

• to get all possible transitions from the current state

• to construct (a part of) the CTMC

• Stochastic Simulation Algorithms in the simulation layer execute the CTMC

• First Reaction Method (only schedule the globally first event)

• Next Reaction Method (schedule several events and reschedule if necessary)

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 13 / 17

Population-Based CTMCs and
Agent-Based Models

Output
Manual scheduling

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 14 / 17

Population-Based CTMCs and
Agent-Based Models

Output
First Reaction Method

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 15 / 17

Population-Based CTMCs and
Agent-Based Models

Output
Next Reaction Method

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 16 / 17

Population-Based CTMCs and
Agent-Based Models

An embedded DSL for modeling
Reflections and lessons learned

• Separate problem definition (model) from execution code (simulators)

⇒ Multiple simulation algorithms are applicable and can be reused

• No reference to the schedule in the model

⇒ Succinct, easily editable and reusable model

• Rule-based syntax (conditions, waiting time, effect) and CTMC semantics

⇒ Semantically sound simulation with SSA-style execution algorithms

• Simulation efficiency depends on exploiting locality

⇒ More work on model analysis needed

December 12, 2016 © 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 17 / 17

